期刊文献+

基于频域纹理消除的结构性纹理缺陷检测方法 被引量:3

Structural texture defects detection method based on frequency domain texture elimination
下载PDF
导出
摘要 针对金属加工表面等结构纹理表面图像缺陷检测问题,结构纹理的存在会对缺陷(比如划痕)检测带来干扰,该文开展在频率域中消除背景纹理的方法来进行缺陷检测的研究。首先基于傅里叶变换的图像复原技术,空间域图像中的结构性纹理对应傅里叶域中高能频率分量,使用最小二乘法直线拟合操作去除,并将这些能量设置为零,经傅里叶逆变换为空间域图像。在复原的图像中,原始图像中的结构纹理区域将变为近似的均匀灰度级,但其中缺陷部分将被保留下来。再使用统计过程控制来设置阈值的方法就能从复原图像中分离出缺陷。最后在一系列的结构性纹理图像上的实验证实了所提方法可行且有效。 The existence of structural texture can interfere with the defects(such as scratches) detection for the surface texture images defects detection of machined surface. The method of eliminating background texture in frequency domain was studied for the defects detection. Firstly, based on the image restoration technology of Fourier transform, the structural texture in spatial domain image corresponded to the high energy frequency component in Fourier domain, which was removed by the least square method linear fitting, and these energies were set to zero finally transformed into the spatial domain image. In the restored image, the structural texture region in original image became an approximate uniform gray level, in which the defective region was preserved. And then the statistical process control was used to set threshold to separate the defects from the restored image. Finally, experiments on a series of structural texture images show that the proposed method is feasible and effective.
作者 吴浩 徐向荣 许四祥 WU Hao;XU Xiangrong;XU Sixiang(School of Mechanical Engineering,Anhui University of Technology,Ma’anshan 243032,China)
出处 《应用光学》 CAS CSCD 北大核心 2020年第4期875-878,共4页 Journal of Applied Optics
基金 安徽省自然科学基金青年项目(1808085QE162)。
关键词 结构性纹理 表面缺陷检测 傅里叶变换 最小二乘法 structural texture surface defects detection Fourier transform least square method
  • 相关文献

参考文献3

二级参考文献40

  • 1焦卫东,杨世锡,钱苏翔,严拱标.乘性噪声消除的同态变换盲源分离算法[J].浙江大学学报(工学版),2006,40(4):581-584. 被引量:13
  • 2徐科,孙浩,杨朝霖,张希,王春梅.形态滤波在中厚板表面裂纹在线检测中的应用[J].仪器仪表学报,2006,27(9):1008-1011. 被引量:7
  • 3宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法[J].北京科技大学学报,2007,29(3):342-345. 被引量:7
  • 4JIANG B,WANG C,LIU H.Liquid crystal display sur-face uniformity defect inspection using analysis of variance and exponentially weighted moving average techniques[J].International Journal of Production Research,2005,43(1):67-80.
  • 5LU C,TSAI D.Automatic defect inspection for LCDs using singular value decomposition[J].The International Journal of Advanced Manufacturing Technology,2005,25(1):53-61.
  • 6TSAI D,HUNG C.Automatic defect inspection of pattern-ed thin film transistor-liquid crystal display(TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition[J].International Journal of Production Research,2005,43(21):4589-4 607.
  • 7LEE J,YOO S.Automatic detection of region-Mura defect in TFT-LCD[J].IEICE Transactions on Information and Systems,2004,87(10):2 371-2 378.
  • 8CHEN S,CHOU S.TFT-LCD Mum defect detection using wavelet and cosine transforms[J].Journal of Advanced Mechanical Design,Systems,and Manufacturing,2008,2(3):441-453.
  • 9GABOR D.Theory of communication[J].J.IEE,1946,93(26):429-457.
  • 10CASASENT D P,SMOKELIN J S.Neural net design of macro Gabor wavelet filters for distortion-invariant object detection in clutter[J].opt.Eng.,1994,33(7):2264-2271.

共引文献99

同被引文献24

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部