摘要
含p-Laplacian算子的微分方程被广泛地应用于物理学和自然现象等各个领域。在含p-Laplacian算子的基础上,讨论一类新的具有任意阶Caputo导数的微分方程边值问题正解存在性问题。通过求解与微分方程等价的积分方程得到积分方程的格林函数及其相应性质,再定义一个Banach空间中的算子和最大模范数,并利用Arzela-Ascoli定理证明定义的算子为全连续算子,最后利用Kranoselskii不动点定理证明所研究的分数阶微分方程边值问题的正解存在。
Differential equations with p-Laplacian operator are widely applied in different fields of physics and natural phenomena.On the basis of p-Laplacian operator,the existence of positive solutions to a class of new boundary value problems of differential equations with arbitrary order Caputo derivative is discussed.Green’s functions of integral equation and properties are obtained by solving the integral equation which is equivalent to differential equation,an operator and maximum norm on a Banach space are defined and Arzela-Ascoli theorem is used to prove that the defined operator is continuous.Finally,the existence of positive solutions to boundary value problems is proved by Kranoselskii’s fixed point theorem.
作者
邵欣
王和香
SHAO Xin;WANG Hexiang(School of Business, Xinjiang University of Finance and Economics, Kuerle 841000, China;School of Mathematics and Statistics, Kashi University, Kashi 844006, China)
出处
《长春大学学报》
2020年第6期24-27,共4页
Journal of Changchun University
基金
新疆维吾尔自治区科技厅自然科学基金项目(2019D01B01)。