期刊文献+

一类具p-Laplacian算子的分数阶边值问题正解的存在性

Existence of Solutions to a Class of Fractional Order Boundary Value Problems with p-Laplacian Operators
下载PDF
导出
摘要 含p-Laplacian算子的微分方程被广泛地应用于物理学和自然现象等各个领域。在含p-Laplacian算子的基础上,讨论一类新的具有任意阶Caputo导数的微分方程边值问题正解存在性问题。通过求解与微分方程等价的积分方程得到积分方程的格林函数及其相应性质,再定义一个Banach空间中的算子和最大模范数,并利用Arzela-Ascoli定理证明定义的算子为全连续算子,最后利用Kranoselskii不动点定理证明所研究的分数阶微分方程边值问题的正解存在。 Differential equations with p-Laplacian operator are widely applied in different fields of physics and natural phenomena.On the basis of p-Laplacian operator,the existence of positive solutions to a class of new boundary value problems of differential equations with arbitrary order Caputo derivative is discussed.Green’s functions of integral equation and properties are obtained by solving the integral equation which is equivalent to differential equation,an operator and maximum norm on a Banach space are defined and Arzela-Ascoli theorem is used to prove that the defined operator is continuous.Finally,the existence of positive solutions to boundary value problems is proved by Kranoselskii’s fixed point theorem.
作者 邵欣 王和香 SHAO Xin;WANG Hexiang(School of Business, Xinjiang University of Finance and Economics, Kuerle 841000, China;School of Mathematics and Statistics, Kashi University, Kashi 844006, China)
出处 《长春大学学报》 2020年第6期24-27,共4页 Journal of Changchun University
基金 新疆维吾尔自治区科技厅自然科学基金项目(2019D01B01)。
关键词 分数阶边值问题 P-LAPLACIAN算子 Kranoselskii不动点定理 fractional boundary value problem p-Laplacian operator Kranoselskii’s fixed point theorem
  • 相关文献

参考文献2

二级参考文献14

  • 1刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19. 被引量:15
  • 2郭大钧,黄春朝,梁方豪,等.实变函数与泛函分析[M].济南:山东大学出版社,2008:281-282.
  • 3Chu J F,Lin X N,Jiang D Q ,et al. Agarwal, Positive Solutions for Second-order Superlinear Repulsive Singular Neumann Boundary Value Problems[ J]. Positivity ,2008,12:555 - 569.
  • 4Yuan C J, Jiang D Q,O' Regan D. Existence and Uniqueness of Positive Solutions for Fourth-order Nonlinear Singular Continuous and Discrete Boundary Value Problems[J]. Applied Mathematics and Computation,2008,203:194 -201.
  • 5Bai Z B. Positive Solutions of Some Nonlocal Fourth-order Boundary Value Problem [ J]. Applied Mathematics and Computation ,2010,215:4191 - 4197.
  • 6辛怡,白雪霏,李勤.分数阶傅里叶联合变换相关在指纹识别中的应用[C]//中国仪器仪表学会医疗仪器分会2010两岸四地生物医学工程学术年会论文集.2010.
  • 7Zhang S Q. Positive Solutions for Boundary Value Problems of Nonlinear Fractional Differential Equations [ J ]. Electronic Journal of Differential Equations ,2006,23 : 1 - 12.
  • 8Bai Z B. On Positive Solutions of a Nonlocal Fractional Boundary Value Problem [ J ]. Nonlinear Analysis ,2010 (72) :916 - 924.
  • 9林晓洁,杜增吉,刘文斌.无穷区间上的二阶边值问题的多解性[J].数学的实践与认识,2007,37(22):144-148. 被引量:3
  • 10晏祥玉,周激流.分数阶微积分在医学图像处理中的应用[J].成都信息工程学院学报,2008,23(1):38-41. 被引量:10

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部