期刊文献+

基于量子蚁群算法的建筑消防疏散路径规划 被引量:7

Building Fire Evacuation Path Planning Based on Quantum ant Colony Algorithm
下载PDF
导出
摘要 针对现在大空间建筑消防应急疏散问题,在火灾发生时,为撤离人群提供一条从危险区域到安全地带的最短安全路线;对疏散路径优化进行了研究,提出一种融合量子进化算法的改进蚁群算法用于消防疏散路径规划,用量子比特表示信息素,量子旋转门反馈控制信息素更新,即能体现量子并行计算的高效性,又能拥有蚁群算法较好的寻优能力;通过3个基准函数优化仿真与传统量子进化算法进行对比,证明算法较优的性能;再通过路径优化的仿真实验与经典蚁群算法进行比较,结果表明,算法能够有效避免陷入局部最优和拥有更快的收敛速度,在疏散路径规划中更为有效。 In view of the fire emergency evacuation problem of large space buildings,in case of fire,provide a shortest safety route from dangerous area to safe area for evacuees.In this paper,the fire evacuation path planning method based on quantum ant colony optimization is adopted.The pheromone is represented by quantum bits,and the pheromone is updated by quantum revolving door feedback control.It can not only reflect the efficiency of quantum parallel computing,but also have the better optimization ability of ant colony algorithm.By comparing the three benchmark function optimization simulation with the traditional quantum evolution algorithm,the performance of the algorithm is proved to be better.The simulation results show that the algorithm can effectively avoid falling into local optimum and has faster convergence speed than ant colony algorithm,and is more effective in evacuation path planning.
作者 王钾 王慧琴 冯路佳 Wang Jia;Wang Huiqin;Feng Lujia(School of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710054,China)
出处 《计算机测量与控制》 2020年第7期167-172,共6页 Computer Measurement &Control
基金 陕西省教育厅重点科学研究计划(Z20180411) 陕西省文物局项目(Z20180301) 西安市社会科学规划基金项目(Z20190065)。
关键词 消防疏散 路径规划 量子蚁群算法 量子比特 量子旋转门 fire evacuation path planning quantum ant colony algorithm qubit Quantum revolving gate
  • 相关文献

参考文献5

二级参考文献44

  • 1符小卫,高晓光.基于贝叶斯优化的无人机路径规划算法[J].宇航学报,2006,27(3):422-425. 被引量:4
  • 2段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172. 被引量:20
  • 3Dorigo M,Gambardella L M.Ant Colonies for the Traveling Salesman Problem[J].BioSystems,1997 (43):73-81.
  • 4Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[A].Proceedings of the 1st European Conference on Artificial Life[C].1991:134-142.
  • 5Dorigo M, Stutzle T. Ant colony optimization[M]. Cambridge: MIT Press/Bradford Books, 2004.
  • 6Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66.
  • 7Nonsiri S, Supratid S. Modifying ant colony optimization[C]. IEEE Conf on Soft Computing in Industrial Applications. 2008: 95-100.
  • 8Thomas Stutzle T, Holger H Hoos. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16(8): 889- 914.
  • 9李士勇,赵宝江.一种蚁群聚类算法[J].计算机测量与控制,2007,15(11):1590-1592. 被引量:6
  • 10Marco Dorigo, Vittorio Maniezzo, Alberto Colorni. Ant system optimization by a colony of cooperating agents [ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26 (1) :28 -41.

共引文献91

同被引文献70

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部