期刊文献+

基于Hilbert-Huang变换的离心泵故障诊断 被引量:2

Centrifugal Pump Fault Diagnosis Based on Hilbert-Huang Transform
下载PDF
导出
摘要 结合Hilbert-Huang变换(HHT)和径向基(RBF)神经网络的优点,提出将二者运用于离心泵故障诊断的新方法。利用HHT构造出代表离心泵振动信号的能量和频率分布的特征向量;根据RBF神经网络建立了从能量和频率分布的特征向量到故障模式的映射来实现离心泵故障诊断,对于离心泵的正常状态、转子不平衡、转子不对中、基础松动和油膜涡动及振荡故障具有较高诊断率。研究结果表明,该方法可有效对离心泵振动信号进行诊断。 Combining the advantages of Hilbert-Huang Transform(HHT) and Radial Basis Function(RBF) neural networks, a new method for fault diagnosis of centrifugal pumps is proposed. The HHT is used to construct the eigenvectors of the energy-frequency distribution representing the vibration signal of the centrifugal pump. According to the RBF neural network, the mapping from the eigenvectors of the energy-frequency distribution to the fault mode is established to realize the centrifugal pump fault diagnosis, which has a high diagnostic rate in the pump’s normal state, rotor imbalance, rotor misalignment, foundation looseness and oil film whirl and oscillation faults. The research results show that this method can effectively diagnose the vibration signal of centrifugal pump.
作者 胡泽 王晓杰 张智博 吴雨宸 Hu Ze;Wang Xiaojie;Zhang Zhibo;Wu Yuchen(Southwest Petroleum University,School of Electrical Engineering and Information,Chengdu 610500,Sichuan)
出处 《电动工具》 2020年第2期15-20,共6页 Electric Tool
关键词 离心泵 故障诊断 Hilbert-Huang变换(HHT) 径向基(RBF)神经网络 Centrifugal pump Fault diagnosis Hilbert-Huang Transform(HHT) Radial Basis Function(BRF)neural networks
  • 相关文献

参考文献3

二级参考文献20

  • 1毛炜,金荣洪,耿军平,李家强.一种基于改进Hilbert-Huang变换的非平稳信号时频分析法及其应用[J].上海交通大学学报,2006,40(5):724-729. 被引量:33
  • 2虞和济,陈长征,张省,等.基于神经网络的智能诊断.北京:冶金工业出版社,1998.
  • 3飞思科技产品开发中心.神经网络理论与MATLAB7实现.北京:电子工业出版社,2005.
  • 4H.Li,H.Q.Zheng,L.W.Tang. Hilbert-Huang Transform and Its Application in Gear Faults Diagnosis[J].Key Engineering Materials, 2005,291 : 655-60.
  • 5Norden E. Huang, Zheng Shen, Steven R. Long. A New View of Nonlinear Water Waves :The Hilbert Spectrum [J]. Fluid Mech, 1999,31:417-57.
  • 6G. Rilling,P. Flandrin,P. Goncalves. On empirical mode decomposition and its algorithms [J]. Proc. of IEEE-EUSIP- CO workshop, 2003.
  • 7NordenE. Huang,Man-Li C. Wu,Steven R. Long. etal. A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis [J]. Proc of Roy Soc, 2003,459: 2317-2345.
  • 8Huang N E, Shen Z, Long S R et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis [C]. Proceedings of the Royal Society of London:The Royal Society,1998,454: 903-995.
  • 9N. Stevenson, M. Mesbah, B.Boashash. A Sampling Limit for the Empirical Mode Decomposition[J]. CRC for Integrated Engineering Asset Management, 2005, IEEE : 647-650.
  • 10LIU B,LING S F.On the selection of informative wavelets for machinery diagnosis[J].Mechanical Systems & Signal Processing,1999,13(1):145-162.

共引文献34

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部