期刊文献+

基于混合l0l1层分解的红外光强与偏振图像融合算法 被引量:1

Fusion Algorithm for Infrared Intensity and Polarization Images Using Hybrid l0l1 Layer Decomposition
下载PDF
导出
摘要 红外光强与偏振图像融合能够更全面地描述探测场景的特征,有利于后续的处理工作。本文提出基于混合l0l1层分解的红外光强与偏振图像融合算法,首先,利用混合l0l1层分解对红外偏振与光强图像进行多尺度几何变换;接着,对于低频特征子带图像采用指数局部高斯分布相似度作为红外偏振低频图像融合权重,并将其注入红外光强低频图像中;然后,对于高频子带图像利用局部空间频率和局部能量进行融合,并用主成分分析将两类特征融合图像进行合成,获得高频融合图像;最后,通过重构获得最终融合图像。通过实验对比,本文算法融合结果能够较好地融合两类图像间的互补特征,显著提升融合图像质量。 A combination of infrared intensity and polarization images can more fully describe the characteristics of a detected scene and facilitate subsequent processing.An algorithm for fusing infrared intensity and polarization images using hybrid l0l1 layer decomposition is proposed.The algorithm consists of the following steps.First,multi-scale geometric transformations are applied to the infrared polarization and intensity images using hybrid l0l1 layer decomposition.Then,in the low-frequency characteristic subband image,the index local Gaussian distribution similarity is adopted as the low-frequency image fusion weight of the infrared polarization image,and the fused infrared polarization image is injected into the low-frequency infrared intensity image.Next,the local spatial frequency and local energy are used to fuse the high-frequency subband image,and the two fused images are combined by principal component analysis to obtain a high-frequency fused image.The final fused image is obtained by reconstruction.An experimental comparison reveals that the algorithm can be used to fuse images of different types with complementary features,and the quality of the fused image is clearly improved.
作者 包达尔罕 高文炜 杨金颖 BAO Daerhan;GAO Wenwei;YANG Jinying(Xi’an Microelectronice Technology Institute,Xi`an 710054,China)
出处 《红外技术》 CSCD 北大核心 2020年第7期676-682,701,共8页 Infrared Technology
关键词 混合l0l1层分解 图像融合 红外光强与偏振图像 多尺度分解 hybrid l0l1 layer decomposition image fusion infrared intensity and polarization image multi-scale transformation
  • 相关文献

参考文献9

二级参考文献79

  • 1隆刚,肖磊,陈学佺.Curvelet变换在图像处理中的应用综述[J].计算机研究与发展,2005,42(8):1331-1337. 被引量:37
  • 2陈铭生,赖炬铭,孙季丰.基于离散多小波变换的医学图像融合[J].江西科学,2006,24(4):209-212. 被引量:3
  • 3ZHAO Y, ZHANG L, ZHANG D, et al. Object separation by polarimetric and spectral imagery fusion[J]. Computer Vision and Image Understanding, 2009, 113(8): 855-866.
  • 4L.da Cunha, Jianping Zhou, Minh N.Do. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15(10): 3089 - 3101.
  • 5M.J. Shesa. The discrete wavelet transform: wedding the a trous and Mallat algorithms[J]. 1EEE Transaction on Signal Processing, 1992, 40(10): 2464-2482.
  • 6Qiang Zhang, Bao-long Guo. Multifocus image fusion using the nonsubsampled contourlet transform[J]. Signal Processing, 2009, 89(7): 1334-1346.
  • 7D.A. LeMaster. A comparison of template matching registration methods for polarimetric imagery[C].//IEEE Aerospace Conference, 2008:1 - 9.
  • 8R.C.Gonzalez, R.E.Woods. Digital lmage Processing Using MATLAB [M]. 北京:电子工业出版社:2009:420-425.
  • 9Jamal Saeedi, Karim Faez. Infrared and visible image fusion using fuzzy logic and population based optimization[J]. Applied Soft Computing. 2012, 12(3): 1041-1054.
  • 10Lavigne Daniel A, Breton Melanie. A new fusion algorithm for shadow penetration using visible and midwave infrared polarimetric images[C]//13th Conference on Information Fusion, 2010.

共引文献105

同被引文献31

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部