期刊文献+

基于数据挖掘技术的大学教育质量分级评价 被引量:4

Research on university education quality grading evaluation based on data mining
下载PDF
导出
摘要 针对传统教育质量分级评价方法指标体系单一,导致分级评价准确性低,为此设计一种基于数据挖掘技术的大学教育质量分级评价方法。分析大学教育质量分级评价要求,确定分级评价指标,采用层次分析法计算分级指标权重,并进行一致性检验,最后将数据挖掘技术应用到大学教育质量分级评价中,实现大学教育质量分级评价。设计实例分析,以专家评价结果为标准,将设计方法和常规评价方法比较,常规方法与专家评价值最大误差为0.08分,设计方法与专家评价值最大误差为0.05分,因此,证明基于数据挖掘技术的大学教育质量分级评价方法比传统方法准确性高。 The traditional grading evaluation method of education quality has a single index system,which leads to low accuracy of grading evaluation.Therefore,a university education quality grading evaluation method based on data mining is designed.The grading evaluation requirements of university education quality is analyzed,the grading evaluation indexes are determined,the grading index weights are calculated by analytic hierarchy process,and then consistency check is implemented.Finally,the data mining is applied to grading evaluation of university education quality to realize its grading evaluation.Examples are designed for analysis.Taking the expert evaluation results as the standard,the maximum error between the conventional method and the expert evaluation value is 0.08 points,while the maximum error between the design method and the expert evaluation value is 0.05 points when comparing the design method with the conventional evaluation method.Therefore,it proves that the university education quality grading evaluation method based on data mining is more accurate than the traditional method.
作者 杜丽娟 DU Lijuan(South China Institute of Software Engineering.GU,Guangzhou 510990,China)
出处 《现代电子技术》 北大核心 2020年第15期101-104,共4页 Modern Electronics Technique
关键词 数据挖掘技术 指标体系 教育质量 分级评价 评价值对比 指标权重 data mining index system education quality grading evaluation evaluation value contrast index weight
  • 相关文献

参考文献15

二级参考文献108

共引文献263

同被引文献22

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部