期刊文献+

变参数WGMRES(m)算法解线性方程组

下载PDF
导出
摘要 文章针对加权GMRES(m)算法给出一种新的加权因子,该加权因子的提出可以加快那些远离零的残余向量的收敛.结合VRP-GMRES提出变参数加权GMRES(m)(DWGMRES(m))算法,该算法可以适当地避免重启动参数m选择不当导致的迭代停滞问题.数值算例不仅说明新的加权因子合理有效,而且表明DWGMRES(m)算法可以显著提高WGMRES(m)和GMRES(m)的计算效率和计算精度,其优越性随计算问题规模的增大而更加明显,具有广阔的工程应用前景.
出处 《通化师范学院学报》 2020年第8期35-39,共5页 Journal of Tonghua Normal University
  • 相关文献

参考文献3

二级参考文献36

  • 1李慧剑,申光宪,刘德义.轧机油膜轴承锥套微动损伤机理和多极边界元法[J].机械工程学报,2007,43(1):95-99. 被引量:8
  • 2CISKOWSKI R D, BREBBIA C A. Boundary element methods in acoustics[M]. Southampton: Computational Mechanics Publications and Elsevier Applied Science, 1991.
  • 3XIANG Changle, WANG Wenping, LIU Hui. Numerical simulation of sound radiation on gearbox's housing[J]. Chinese Journal of Mechanical Engineering, 1998, 11(4): 249-256.
  • 4WU Chengjun, CHEN Hualing, HUANG Xieqing. Theoretical prediction of sound radiation from a heavy fluid-loaded cylindrical coated shell[J]. Chinese Journal ofMechanicalEngineering, 2008, 21(3): 26-30.
  • 5ROKHLIN V. Rapid solution of integral equations of classical potential theory[J]. Journal of Computational Physics, 1985, 60(2): 187-207.
  • 6GREENGARD L, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2): 325-348.
  • 7YOSHIDA K. Application s of fast multipole method to boundary integral equation method[D]. Kyoto: Kyoto University, 2001.
  • 8CHEW W C, CHAO H Y, CUI T J, et al. Fast integral equation solvers in computational electromagnetics of complex structures[J]. Engineering Analysis with Boundary Element, 2003, 27(8): 803-823.
  • 9LIU Y J. A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems[J]. International Journal for Numerical Methods in Engineering, 2006, 65(6): 863-881.
  • 10ROKHLIN V. Diagonal forms of translation operators for the Helmholtz equation in three dimensions[J]. Applied and Computational Harmonic Analysis, 1993, 1(1): 82-93.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部