摘要
以浙江省2016年1-10月的雷达回波强度数据为基础,分别应用随机森林模型、BP神经网络模型、卷积神经网络模型来预测降雨量并进行对比.建模分析结果表明,随机森林模型预测效果精确度较低,容易低估较大的降雨强度,而BP神经网络和卷积神经网络预测的效果都比随机森林好,特别是卷积神经网络,其预测值与真实值更加接近,且对较大的降雨强度拟合较好.
The rainfall is modeled and predicted based on the radar echo intensity data during January to October of 2016 in Zhejiang province,and the prediction results are compared between random forest method,BP neural network model,and convolutional neural network(CNN) model.The results show that the random forest model is relatively low in accuracy,and is easy to underestimate large rainfall intensity.The BP neural network and the CNN method perform better than random forest method,especially the convolutional neural network model.Compared with the other two machine learning methods,the CNN is better in prediction accuracy and large rainfall intensity fitting.
作者
陈晓平
陈易旺
施建华
CHEN Xiaoping;CHEN Yiwang;SHI Jianhua(College of Mathematics and Informatics,Fujian Normal University,Fuzhou 350117;School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000)
出处
《南京信息工程大学学报(自然科学版)》
CAS
2020年第4期483-494,共12页
Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金
国家自然科学基金(11601083)
福建师范大学创新团队基金(IRTL1704)
福建省高等学校科技创新团队培育计划(IRTSTFJ)
福建师范大学研究生教育教学改革研究项目资助
数字福建气象大数据研究所项目
福建省数据科学与统计重点实验室开放课题(2020L0704,2020L0703)。
关键词
降雨量
BP神经网络
卷积神经网络
随机森林
rainfall
BP neural network(BPNN)
convolutional neural network(CNN)
random forest