期刊文献+

一种基于正则优化的批次继承极限学习机算法 被引量:5

A Batch Inheritance Extreme Learning Machine Algorithm Based on Regular Optimization
下载PDF
导出
摘要 极限学习机(ELM)作为一种新型神经网络,具有极快的训练速度和良好的泛化性能。针对极限学习机在处理高维数据时计算复杂度高,内存需求巨大的问题,该文提出一种批次继承极限学习机(B-ELM)算法。首先将数据集均分为不同批次,采用自动编码器网络对各批次数据进行降维处理;其次引入继承因子,建立相邻批次之间的关系,同时结合正则化框架构建拉格朗日优化函数,实现批次极限学习机数学建模;最后利用MNIST, NORB和CIFAR-10数据集进行测试实验。实验结果表明,所提算法具有较高的分类精度,并且有效降低了计算复杂度和内存消耗。 As a new type of neural network, Extreme Learning Machine(ELM) has extremely fast training speed and good generalization performance. Considering the problem that the Extreme Learning Machine has high computational complexity and huge memory demand when dealing with high dimensional data, a Batch inheritance Extreme Learning Machine(B-ELM) algorithm is proposed. Firstly, the dataset is divided into different batches, and the automatic encoder network is used to reduce the dimension of each batch. Secondly,the inheritance factor is introduced to establish the relationship between adjacent batches. At the same time,the Lagrange optimization function is constructed by combining the regularization framework to realize the mathematical modeling of batch ELM. Finally, the MNIST, NORB and CIFAR-10 datasets are used for the test experiment. The experimental results show that the proposed algorithm not only has higher classification accuracy, but also reduces effectively computational complexity and memory consumption.
作者 刘彬 杨有恒 赵志彪 吴超 刘浩然 闻岩 LIU Bin;YANG Youheng;ZHAO Zhibiao;WU Chao;LIU Haoran;WEN Yan(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China;School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2020年第7期1734-1742,共9页 Journal of Electronics & Information Technology
基金 河北省自然科学基金(F2019203320,E2018203398)。
关键词 极限学习机 高维数据 批次学习 继承因子 正则化 Extreme Learning Machine(ELM) High dimensional data Batch learning Inheritance factor Regularization
  • 相关文献

参考文献1

二级参考文献2

共引文献2

同被引文献26

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部