期刊文献+

传感网中数据驱动的多时段控制方法优化研究 被引量:1

Time-of-Day Control Optimization of Data-Driven Urban Road Constant-Peak-Type Intersections in Sensor Networks
下载PDF
导出
摘要 为了克服“常峰型”交叉口多时段控制时段划分单因素划分方法的趋同性与多因素划分方法的过复杂性,提出了一种基于传感网数据采集技术与数据驱动理论的“常峰型”交叉口多时段控制时段划分优化方法。以传感网感知能力对传统交通流量数据增加维度,引入交叉口交通流三维向量,以向量的形式表示在某一交叉口某一段时间内的交通总流量的大小、方向及与冲突点的平均时间距离。运用时间序列自回归滑动平均算法对相邻向量间距离进行归并得出时段划分优化方案。以某城市实际交通流量数据为测试数据进行评价对比分析。结果表明,创新模型运用在“常峰型”交叉口,与传统方法相比其控制效果更加准确高效,交叉口全天总延误时间有效降低约6.04%。 In order to overcome the complexity of the single factor and multi-factor method of time-of-day control in the constant-peak-type intersections,this paper proposes a novel optimization model of the division of time-of-day control segmented points of constant-peak-type intersections based on sensor networks and data-driven.The dimension of traditional traffic flow data is increased by sensor networks,and a vector quantity is developed to represent the size,direction,and average time frequency with conflict point traffic of the total traffic flow at a certain intersection for a period by introducing a 3D vector of intersection traffic flow.A time-series segmentation algorithm is used to merge the distances between adjacent 3D vectors to obtain the time-of-day control scheme.The actual traffic flow data of a city in 2016 is used as the test data for comparative analysis.It is shown that when the innovated double-order optimization model is used in the intersection according to the constant-peak-type traffic flow characteristic,its control is more accurate and efficient than that of the traditional total flow segmentation model.The total delay time is reduced by approximately 6.04%.
作者 徐琛 董德存 欧冬秀 XU Chen;DONG Decun;OU Dongxiu(The Key Laboratory of Road and Traffic Engineering,Ministry of Education,School of Transportation Engineering,Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety,Tongji University,Shanghai 201804,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第15期235-241,共7页 Computer Engineering and Applications
关键词 交通信号控制 多时段控制 数据驱动 传感网 traffic signal control time-of-day control data-driven sensor networks
  • 相关文献

参考文献3

二级参考文献36

  • 1杨立才,贾磊,孔庆杰,朱文兴.基于人工免疫算法的交通时段自动划分方法[J].控制理论与应用,2006,23(2):193-198. 被引量:21
  • 2姚佼.基于车辆行驶数据的交叉口交通控制机制研究[D].上海:同济大学,2011.
  • 3KLEIN L A, MILLS M K, GIBSON D R P. Traffic Detector Handbook[M]. Washington DC: Federal Highway Administration, 2006.
  • 4PAPAGEORGIOU M. A new approach to time-of-day control based on a dynamic freeway traffic model[J]. Transportation Research Part B: Methodological, 1980, 14(4): 349-360.
  • 5KREER J B. Factors affecting the relative performance of traffic responsive and time-of-day traffic signal control[J]. Transportation Research, 1976, 10(2): 75-81.
  • 6HAUSER T A, SCHERER W T. Data mining tools for real-time traffic signal decision support and maintenance[C]∥IEEE. 2001 IEEE International Conference on Systems, Man, and Cybernetics. Tucson: IEEE, 2001: 1471-1477.
  • 7PARK B, LEE D H, YUN I. Enhancement of time of day based traffic signal control[C]∥IEEE. 2003 IEEE International Conference on Systems, Man, and Cybernetics. Manchester: IEEE, 2003: 3619-3624.
  • 8PARK B, SANTRA P, YUN I, et al. Optimization of time-of-day breakpoints for better traffic signal control[J]. Transportation Research Record, 2004(1867): 217-223.
  • 9PARK B, LEE J. A procedure for determining time-of-day break points for coordinated actuated traffic signal systems[J]. KSCE Journal of Civil Engineering, 2008, 12(1): 37-44.
  • 10LEE J, KIM J, PARK B. A genetic algorithm-based procedure for determining optimal time-of-day break points for coordinated actuated traffic signal systems[J]. KSCE Journal of Civil Engineering, 2011, 15(1): 197-203.

共引文献17

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部