摘要
研究了一类对称α稳态过程驱动的随机微分方程数值解问题.这类随机微分方程的漂移项具有超线性增长系数.采用半隐式Euler-Maruyama算法得到:对于任意小的ε>0和α∈[1,2),其数值解强收敛率是α-ε4.
In this paper,the numerical solution of a class of stochastic differential equations driven by symmetricα-stable process is studied.The drift coefficient of stochastic differential equations under consideration is allowed to grow super-linearly.The strong convergence of numerical solution by the semi-implicit Euler-Maruyama algorithm is shown with the rate ofα-ε4 for arbitrarily smallε>0 andα∈[1,2).
作者
胡军浩
高帅斌
刘暐
HU Junhao;GAO Shuaibin;LIU Wei(College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China;Department of Mathematics, Shanghai Normal University, Shanghai 200234, China)
出处
《中南民族大学学报(自然科学版)》
CAS
2020年第4期431-435,共5页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(61876192,11701378,11871343,11971316)
中南民族大学研究生创新基金项目(3212020sycxjj306)。