期刊文献+

Weyl Spectrum of Upper Triangular Operator Matrices

原文传递
导出
摘要 This paper is concerned with general n×n upper-triangular operator matrices with given diagonal entries.The characterizations of perturbations of their left(resp.right)Weyl spectrum and Weyl spectrum are given,based on the space decomposition technique.Moreover,some sufficient and necessary conditions are given under which the left(resp.right)Weyl spectrum and the Weyl spectrum of such operator matrix,respectively,coincide with the union of the left(resp.right)Weyl spectrum and the Weyl spectrum of its diagonal entries.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第7期783-796,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11901323 and 11961052) Natural Science Foundation of Inner Mongolia of China(Grant No.2018BS01001) the Research Program of Sciences at Universities of Inner Mongolia Autonomous Region(Grant Nos.NJZZ18018) SPH-IMUN(Grant No.2017YJRC018)。
  • 相关文献

参考文献1

二级参考文献9

  • 1Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994).
  • 2Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000).
  • 3Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001).
  • 4Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000).
  • 5Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998).
  • 6Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909).
  • 7Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998).
  • 8Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989).
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966).

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部