期刊文献+

基于FPGA的透射率快速估计去雾方法

A Dehazing Method by Fast Estimating Transmittance Based on FPGA
下载PDF
导出
摘要 在雾、霾等天气条件下,由光学相机所获取的原始景物会出现严重的图像退化现象,比如对比度及能见度降低、图像模糊等情况。目前在图像去雾领域,暗通道先验算法对解决上述问题具有良好的效果,但是考虑到该算法的计算复杂度以及实时性,无法将其直接移植到FPGA内。因此在暗通道先验算法基础上,首先用一种大气透射率快速估计方法来降低计算量,同时改善传统算法出现的Halo现象,然后采用自动色阶方法对去雾后图像进行对比度拉伸,改善去雾效果。实验结果表明,所提算法不仅满足实时去雾的要求,而且有效提高了图像去雾的能力。 Under the weather conditions such as fog the original scene acquired by the optical camera will have serious image degradation for example the contrast and visibility of the image are reduced and the image is blurred.At present in the field of image dehazing the dark-channel priori algorithm has a good effect in solving the above problems.But in view of the computational complexity and real-time performance of the algorithm it cannot be directly transplanted into the FPGA.Therefore based on the dark-channel priori algorithm this paper first uses a fast estimation method for atmospheric transmittance to reduce the calculation amount and at the same time weakens the Halo phenomenon of the traditional algorithm.Then the auto level method is used to perform contrast stretching on the dehazed image for improving the dehazing effects.Experimental results show that the proposed algorithm not only meets the requirements of real-time dehazing but also effectively improves the ability of image dehazing.
作者 李岩 李栋 张弘 陈浩 杨一帆 孟凡龙 LI Yan;LI Dong;ZHANG Hong;CHEN Hao;YANG Yifan;MENG Fanlong(Beihang University,Beijing 102200,China;Military Representative Office of Army Equipment Department in Luoyang, Luoyang 471000,China;Luoyang Institute of Electro-Optical Equipment,AVIC,Luoyang 471023,China)
出处 《电光与控制》 CSCD 北大核心 2020年第7期87-90,105,共5页 Electronics Optics & Control
基金 国家重点研发计划政府间专项项目(2016YFE0108100)。
关键词 图像去雾 暗通道先验 FPGA 实时处理 image dehazing dark-channel priori FPGA real-time processing
  • 相关文献

参考文献9

二级参考文献66

  • 1詹翔,周焰.一种基于局部方差的雾天图像增强方法[J].计算机应用,2007,27(2):510-512. 被引量:45
  • 2胡际先.透雾连续变焦光学系统的设计[J].光学与光电技术,2007,5(4):61-64. 被引量:2
  • 3OAKLEY J P,SATHERLEY B L.Improving image quality in poor visibility conditions using a physical model for degradation[J].IEEE Trans Image Processing(S1057-7149),1998,7(2):167-179.
  • 4TAN K,OAKLEY J P.Physics based approach to color image enhancement in poor visibility conditions[J].Optical Soc Am A,2001,18(10):2460-2467.
  • 5NAYAR S K,NARASIMHAN S G.Vision in bad weather[C] //Proc Seventh Int'l Conf Computer Vision,1999,2:820-827.
  • 6NARASIMHAN S G,NAYAR S K.Removing weather effects from monochrome images[C] //Proc IEEE Conf Computer vision and Pattern Recognition,2001(2):186-193.
  • 7RAHMAN Zi-ur,JOBSON D J,WOODELL G A.Retinex processing for automatic image enhancement[J].Journal of Electronic Imaging,2004,13(1):100-110.
  • 8KIMMEL R,ELAD M,SHAKED D,et al.A variational framework for Retinex[J].International Journal of Computer Vision,2003,52(1):7-23.
  • 9GONZALEZ R C,WOODS R E.Digital image processing[M].2版.北京:电子工业出版社,2003.
  • 10OAKLEY J P, SATHERLEY B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation[J]. IEEE Transactions on Image Processing, 1998, 7( 2):167-179.

共引文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部