期刊文献+

Insight into fluorescence properties of 14 selected toxic single-ring aromatic compounds in water:Experimental and DFT study 被引量:2

原文传递
导出
摘要 Various single-ring aromatic compounds in water sources are of great concern due to its hazardous impact on the environment and human health.The fluorescence excitation-emission matrix(EEMs)spectrophotometry is a useftil method to identify organic pollutants in water.This study provides a detailed insight into the fluorescence properties of the 14 selected toxic single-ring aromatic compounds by experimental and theoretical analysis.The theoretical analysis were done with Time-Dependent Density Functional Theory(TD-DFT)and B3LYP/6-31G(d,p)basis set,whereas,Polarizable Continuum Model(PCM)was used to consider water as solvent.The selected compounds displayed their own specific excitation-emission(Ex/Em)wavelengths region,at Ex<280 nm and Em<340 nm,respectively.Whereas the theoretical Ex/Em was observed as.Ex at 240 nm-260 nm and Em at 255 nm-300 nm.Aniline as a strong aromatic base has longer Em(340 nm)than alkyl,carbonyl,and halogens substituted benzenes.The lone pair of electrons at amide substituent serves as a 7r-electron contributor into the aromatic ring,hence increasing the stability and transition energy,which results in longer emission and low quantum yield for the aniline.The fluorescence of halogenated benzenes illustrates an increase in the HOMO-LUMO energy gap and a decrease in quantum yield associated with atomic size(F>Cl>Br>I).In this study the theoretical results are in line with experimental ones.The understanding of fluorescence and photophysical properties are of great importance in the identification of these compounds in the water.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2020年第3期59-74,共16页 环境科学与工程前沿(英文)
基金 We are grateful for the financial support provided by the National Major Scientific Instrument Equipment Development Project(No.2017YFF0408500).
  • 相关文献

参考文献2

二级参考文献90

  • 1Fraga H., Photochem. Photobiol. ScL, 2008, 7, 146.
  • 2Roda A., Pasini E, Mirasoli, M., Michelini E., Guardigli M., Trends Biotechnol., 2004, 22, 295.
  • 3Branchini B. R., Murtiashaw M. H., Magyar R. A., Portier N. C., Ruggiero M. C., Stroh J. G., J. Am. Chem. Soc., 2002, 124, 2112.
  • 4Branchini B. R., Southworth T. L., Murtiashaw M. H., Magyar R. A., Gonzalez S. A., Ruggiero M. C., Stroh J. G., Biochemistry, 2004, 43, 7255.
  • 5Wood K. V., Photochem. PhotobioL, 1995, 62, 662.
  • 6Hastings J. W., Gene, 1996, 173, 5.
  • 7Liu Y. J., de Vico L., Lindh R., J. Photochem. Photobiol. A, 2008, 194, 261.
  • 8Navizet 1., Liu Y. J., Ferr6 N., Xiao H. Y., Fang W. H., Lindh R., J Am. Chem. Soc., 2010, 132, 706.
  • 9Yang T., Goddard J. D., a Phys. Chem. A, 2007, 111, 4489.
  • 10Nakatani N., Hasegawa J. Y., Nakatsuji H., Chem. Phys. Lett., 2009, 469, 191.

共引文献9

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部