期刊文献+

基于Landsat8遥感图像的黑土区土壤有机质含量反演研究 被引量:8

Inversion of soil organic matter content in black soil region based on landsat8 remote sensing image
下载PDF
导出
摘要 针对黑土区耕地土壤有机质含量测定快速性和准确性的需求,探究黑土区耕地土壤有机质含量与卫星影像光谱间的关系,以促进信息技术在农业领域的应用。本文通过确定土壤有机质的光谱特征,来构建土壤有机质含量的反演模型。首先采集2018年吉林省农安县耕地土壤Landsat 8遥感图像,用快速大气校正(QUAC)模型对遥感图像进行大气校正;然后结合研究区域土壤采样的有机质含量化验数据,通过基于敏感波段多元线性回归分析的方法,构建了研究区土壤有机质含量的定量反演模型。试验结果表明:土壤有机质含量在短红外1(B6)波段1.560~1.660μm处具有良好的响应能力;反射率所建立的模型拟合效果最优;其R^2为0.974,RMSE为24.058,验证模型有机质含量实测值与预测值的R^2为0.933,证明该反演模型具有较高的精度与稳定性。研究结果为促进遥感技术在土壤养分含量的快速测定提供了新的途径。 Aiming at the rapidity and accuracy of soil organic matter content in cultivated land in black soil region,the relationship between soil organic matter content and satellite image spectrum in black soil area was explored to promote the application of information technology in agriculture.In this paper,the inversion model of soil organic matter content is constructed by determining the spectral characteristics of soil organic matter.Firstly,the Landsat 8 remote sensing image of cultivated soil in Nong’an County of Jilin Province was collected in 2018,and the remote sensing image was atmospherically corrected by the rapid atmospheric correction(QUAC)model.Then,the organic matter content test data of the soil sample in the study area was combined with the multivariate linear regression analysis based on sensitive bands.The method was used to construct a quantitative inversion model of soil organic matter content in the study area.The experimental results show that the soil organic matter content has good response ability in the short infrared 1 band 1.560~1.660μm;the model established by the reflectivity has the best fitting effect;its R^2 is 0.974,the RMSE is 24.058,and the organic matter content of the model is verified.The measured value and the predicted value of R^2 are 0.933,which proves that the inversion model has higher precision and stability.The results provide a new way to promote the rapid determination of soil nutrient content by remote sensing technology.
作者 陈德宝 陈桂芬 Chen Debao;Chen Guifen(College of Information Technology,Jilin Agricultural University,Changchun,130118,China)
出处 《中国农机化学报》 北大核心 2020年第6期194-198,共5页 Journal of Chinese Agricultural Mechanization
基金 吉林省科技发展计划项目(重点科技攻关项目)(20180201073SF) 吉林省科技发展计划项目(20160412034XH)。
关键词 Landsat 8多光谱遥感 有机质 定量反演 黑土区 预测模型 Landsat8 multispectral remote sensing organic matter quantitative inversion black soil region prediction model
  • 相关文献

参考文献14

二级参考文献219

共引文献373

同被引文献138

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部