期刊文献+

基于k细分等几何层次模型的多重网格算法研究 被引量:1

Research on Multigrid Algorithm Based on Isogeometric Hierarchical Model of K-subdivision
下载PDF
导出
摘要 相对于传统的有限元法,基于几何样条的等几何方法可以保证几何模型与物理模型的一致性,但细分依然会导致模型刚度矩阵较大时求解效率不高的问题,因此可以采用多重网格法加速等几何分析中的迭代求解。文章研究等几何法中的k细分方法并构建了基于k细分的多重网格映射矩阵,加快求解效率,探讨了不同k细分策略的收敛速度。算法计算结果表明:多重网格法能够有效提高基于k细分等几何分析方法求解的收敛速度。 Compared with the traditional finite element method, isogeometric analysis method(IGA for short) based on spline geometric can keep the consistency between the geometric model and the physical model. But the subdivision still leads to the solving efficiency problem with huge stiffness matrix. Therefore, the multiple grid method was introduced to the iterative progress in IGA. This paper studied the k-subdivision in IGA and constructed a multiple grid reflecting matrix based on k-subdivision to improve the solution efficiency, and also the convergence speed of different k-subdivision strategies was studied. The results show that: the convergence speed of IGA based on k-subdivision was improved effectively using the multiple grid method.
作者 魏志鹏 罗会信 左兵权 费建国 WEI Zhi-peng;LUO Hui-xin;ZUO Bing-quan;FEI Jian-guo(Key Laboratory of Metallurgical Equipment and Control Technology Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《组合机床与自动化加工技术》 北大核心 2020年第7期30-35,共6页 Modular Machine Tool & Automatic Manufacturing Technique
基金 武汉科技大学冶金装备及其控制教育部重点实验室开放基金项目(2015B14) 湖北省教育厅科学研究计划指导项目(B2019003)。
关键词 等几何法 多重网格法 映射矩阵 k细分 isogeometric method multigrid method reflecting matrix k-subdivision
  • 相关文献

参考文献4

二级参考文献34

  • 1马翔,罗俊奇,康宝生,周儒荣.一种trimmed NURBS曲面的裁剪方法[J].工程图学学报,1993,14(1):41-47. 被引量:6
  • 2赵丕智,甘彦普,李长喜,吕作元.动静压轴承在大型磨床上的应用[J].机械设计与制造,1994(3):28-29. 被引量:1
  • 3沈庆云,周来水,张乐年,周儒荣.一种 NURBS 曲面的裁剪方法[J].南京航空航天大学学报,1997,29(2):138-144. 被引量:8
  • 4方顾,李际军.用于非均匀有理B样条曲面裁剪的扫描线算法[J].计算机集成制造系统,2007,13(10):2060-2063. 被引量:5
  • 5Hughes T J R,Cottrell J A,Bazilevs Y.Isogeometric analysis CAD,finite elements,N URBS,exact geometry and mesh refinement[J].Computer Methods in Applied Mechanics and Engi-neering,2005,194(39/41):4135-4195.
  • 6Evans J A,Bazilevs Y,Babuska I,Hughes T J R.n-widths,sup-infs,and optimality ratios for the k-version of the isogeometric finite element method [J]Computer Methods in Applied Mechanics and Engineering,2009,198(21/26):1726-1741.
  • 7Lipton S,Evans J A,Bazilevs Y,Elguedj T,Hughes T J R.Robustness of isogeometric struc-tural discretizations under severe mesh distortion[J].Computer Methods in Applied Mechan-ics and Engineering,2010,199(5/8):357-373.
  • 8Kumar D S,Kumar K S,Das M K.A fine grid solution for a lid-driven cavity flow using multi-grid method[J].Engineering Applications of Computational fluid Mechanics,2009,3(3):336-354.
  • 9Trottenberg U,Oosterlee C W,Schuller A.Multigrid[M].Academic Press,2000.
  • 10Briggs W L,Henson V E,McCormick S F.A Multigrd Tutoral[M].Philadelphia,PA,USA:Society for Industrial and Applied Mathematics,2000.

共引文献42

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部