摘要
本文基于MATLAB多目标遗传算法与蒙特卡罗光线追迹方法提出了一种线性菲涅尔聚光集热系统光学综合性能的多目标优化计算方法。在模型验证基础上,结合计算时间缩减技术和名义年效率概念,以名义年效率和热流不均匀度为目标函数,对线性菲涅尔聚光集热系统主镜场、二次聚光器以及吸热器的关键几何结构参数进行了多目标优化研究,获得了不同地理纬度位置与镜场跟踪模式下的系统光学综合性能Pareto最优解集。针对所得到不同情形下Pareto最优解集,采用逼近理想点排序法筛选推荐了相应的线性菲涅尔聚光集热系统几何结构参数最优组合,可为此一类系统的建造选址、运行策略、结构选型和参数优化提供工程指导或技术参考。
In this paper,a multi-objective optimization method for the optical comprehensive performance of the linear Fresnel reflector concentrator(LFRC)is proposed based on MATLAB multi-objective genetic algorithm and Monte Carlo ray-tracing(MCRT)method.Combined with the calculation time reduction technology and the concept of nominal annual optical efficiency,the nominal annual efficiency and the heat flux nonuniformity are taken as the objective functions,and the key geometric parameters of primary mirror field,secondary reflector and heat absorber of LFRC systems are optimized.The Pareto fronts of the optical comprehensive performance of LFRC systems are obtained for different latitudes and mirror field tracking modes.According to these Pareto fronts,the optimal combination of geometric parameters is obtained for LFRC systems,by using a method called Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS).The results can provide guidance for system location,operation strategy modification,structure selection and parameter optimization.
作者
门静婧
赵雪茹
冷亚坤
程泽东
何雅玲
MEN Jing-Jing;ZHAO Xue-Ru;LENG Ya-Kun;CHENG Ze-Dong;HE Ya-Ling(Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education,School of Energy and Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China;China National Electrical Research Institute Co.,Ltd.,National Laboratory for Environmental Adaptability of Industrial Products,Guangzhou 510300,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2020年第7期1706-1711,共6页
Journal of Engineering Thermophysics
基金
国家自然科学基金面上项目(No.51976158)
陕西省自然科学基础研究计划项目(No.2019JQ-186)。
关键词
线性菲涅尔
蒙特卡罗光线追迹
名义年效率
热流不均匀度
多目标优化
linear Fresnel reflector concentrator
Monte Carlo ray-tracing
nominal annual optical efficiency
heat flux non-uniformity
multi-objective optimization