期刊文献+

基于遗传算法的消防站选址规划模型 被引量:16

Fire station location planning model based on genetic algorithm
下载PDF
导出
摘要 为有效解决城市消防站建设成本高和空间资源浪费大等问题,提供更好应急服务,提出一种基于遗传算法(GA)的消防站选址规划模型(GAFLP)。在消防站选址过程中,布局安全与建设成本是两个不可调和的矛盾,由于消防站建设成本极高,城市应建设适当数量的消防站,使其覆盖所有火灾需求点的同时,尽可能最小化建设成本。该模型通过对传统遗传算法进行自适应改进,可自行优化消防站个数与位置,克服现有解决方案中需事先确定消防站数量的缺陷,能有效平衡消防站布局安全性与经济性两方面矛盾,优化消防站布局。 In order to effectively solve the problems of high construction cost and large space resource waste of urban fire stations,a Fire-station Location Planning model based on Genetic Algorithm(GAFLP)was proposed. In the process of site selection of fire stations,layout safety and construction cost are two irreconcilable contradictions. Due to the extremely high construction cost of fire stations,the city should construct an appropriate number of fire stations to cover all fire demand points,while minimizing the construction cost. Through the adaptive improvement of the traditional genetic algorithm,the model can optimize the number and locations of fire stations by itself,overcome the major defect in the existing solutions that the number of fire stations must be set in advance,and effectively balance the contradiction between safety and economy of the fire station layout.
作者 郭静文 赵朋朋 倪佳成 GUO Jingwen;ZHAO Pengpeng;NI Jiacheng(College of Computer Science and Technology,Soochow University,Suzhou Jiangsu 215008,China)
出处 《计算机应用》 CSCD 北大核心 2020年第S01期41-44,共4页 journal of Computer Applications
基金 秦惠䇹与李政道中国大学生见习进修基金。
关键词 消防站选址规划 遗传算法 多目标优化 变异算子 选择算子 fire station location planning Genetic Algorithm(GA) multi-objective optimization mutation operator selection operator
  • 相关文献

参考文献3

二级参考文献17

  • 1马云峰,张敏,杨珺.物流设施选址问题中时间满意度函数的定义及应用[J].物流技术,2005,24(9):26-29. 被引量:28
  • 2Snyder L V, Atan Z, Peng P, et al. OR/MS models for supply chain disruptions: a review[ J]. Available at SSRN 1689882, 2012.
  • 3Snyder L V, Daskin M S. Reliability models for facility location: the expected failure cost case[ J]. Transportation Science, 2005, 39(3) : 400-416.
  • 4Aboolian R, Cui T, Shen Z J M. An efficient approach for solving reliable facility location models[ J]. INFORMS Journal on Computing, 2012, 25 (4): 720-729.
  • 5Shen Z J M, Zhan R L, Zhang J. The reliable facility location problem: Formulations, heuristics, and approximation algorithms [ J ]. INFORMS Journal on Computing, 2011, 23 ( 3 ) : 470- 482.
  • 6Cui T, Ouyang Y, Shen Z J M. Reliable facility location design under the risk of disruptions[ J]. Operations Research, 2010, 58(4-part-1 ) : 998-1011.
  • 7Peng P, Snyder L V, Lim A, et al. Reliable logistics networks design with facility disruptions[ J]. Transportation Researeh Part B: Methodological, 2011, 45(8) : 1190-1211.
  • 8Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[j] Evolutionary Computation, IEEE Transactions on, 2002, 6(2) : 182-197.
  • 9卫田,范文慧.基于NSGA Ⅱ的物流配送中车辆路径问题研究[J].计算机集成制造系统,2008,14(4):778-784. 被引量:30
  • 10郭子雪,齐美然,张强.基于区间数的应急物资储备库最小费用选址模型[J].运筹与管理,2010,19(1):15-20. 被引量:38

共引文献22

同被引文献178

引证文献16

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部