期刊文献+

基于神经网络的复杂储层流体分级识别 被引量:11

Fluid hierarchical identification of complex reservoir based on neural network method
下载PDF
导出
摘要 YD油田具有束缚水饱和度高、地层水矿化度高、黏土矿物含量高、油气水分布规律复杂,以及无统一油气水界面的特征,储层中不同流体的测井响应特征区别不明显,采用常规测井图版无法准确识别油层、气层、油气层,以及低电阻率油层。文中通过选择相关性强的测井参数,应用神经网络建立分级解释模型,实现了对复杂储层中不同流体的自动化、准确识别。研究结果表明,基于神经网络的储层流体分级识别技术,成功识别了油层、气层、油气层,以及低电阻率油层,解决了复杂储层的流体识别问题,并成功应用于YD油田开发。 With the characteristics of high irreducible water saturation,high-salinity formation water,high clay content,complex distribution regularity of oil,gas and water,no uniform oil/gas/water contact,and no obvious logging response characteristics in the complex reservoir in YD oilfield,conventional logging identification methods are impossible to accurately distinguish oil layer,gas layer,oil and gas layer,and low resistivity oil layer.Selecting highly-correlated well logging parameters,and applying neutral network method to hierarchical identification of complex reservoir,the reservoirs fluids can be identified automatically and accurately.The study shows that fluid identification technology of complex reservoir based on neural network successfully identified the layers of oil,gas,oil and gas,and low resistance oil,and solved fluid identification problem of complex reservoir and it was applied to YD oilfield development successfully.
作者 李兆亮 柳金城 王琳 陈晓冬 石金华 姜明玉 LI Zhaoliang;LIU Jincheng;WANG Lin;CHEN Xiaodong;SHI Jinhua;JIANG Mingyu(Research Institute of Exploration and Development,Qinghai Oilfield Company,PetroChina,Dunhuang 736202,China;Oil Development Department,Qinghai Oilfield Company,PetroChina,Dunhuang 736202,China)
出处 《断块油气田》 CAS CSCD 北大核心 2020年第4期498-500,共3页 Fault-Block Oil & Gas Field
关键词 流体识别 低电阻率油层 复杂储层 神经网络 fluid identification low resistivity oil layer complex reservoir neural network
  • 相关文献

参考文献14

二级参考文献138

共引文献231

同被引文献162

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部