期刊文献+

DFT计算结合固体NMR研究富铝SSZ-13的铝分布和Brønsted酸性 被引量:3

Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite:A Combined DFT Calculation and Solid-State NMR Study
下载PDF
导出
摘要 具有菱沸石(CHA)结构的SSZ-13分子筛在甲醇制烯烃(MTO)及柴油机车尾气氨选择性催化还原(NH3-SCR)反应中具有重要的应用,采用富铝SSZ-13可以调节MTO反应的烯烃选择性和提升NH3-SCR的低温脱硝活性,因此SSZ-13中的铝含量和分布与对应的酸性决定了其催化性能。本文采用密度泛函理论结合固体核磁共振实验研究了富铝和富硅HSSZ-13的Al位置与Brønsted酸强度的内在关系。通过计算取代能发现,对于孤立Al位,质子位于Al周围4个不同O位时能量差异较小,最稳定的B酸位点是O(1)-H。对于富铝SSZ-13,两个Al原子位于同一六元环的对位是Al-Si-Si-Al(NNNN)序列中最稳定的结构,而Al-Si-Al(NNN)序列中能量最优的Al分布是两个铝原子排布于六棱柱上下不同的六元环上。通过计算最稳定构型下的质子亲和势、NH3脱附能和吸附氘代乙腈后的1H NMR化学位移,发现富铝SSZ-13中含有Si(2Al)分布的NNN序列导致了其Brønsted酸强度弱于高硅的分子筛。分峰拟合29Si魔角旋转核磁共振(MAS NMR)谱图表明富铝SSZ-13中Si(2Al)的含量在43%以上,而吸附氘代乙腈后的1H MAS NMR实验显示富铝SSZ-13的桥羟基化学位移向低场移动,进一步证明富铝SSZ-13具有较弱的Brønsted酸强度。 SSZ-13 zeolite with a chabazite(CHA)topology structure has important applications for methanol to olefin(MTO)conversion and selective catalytic reduction of nitrogen oxides(NOx)by ammonia(NH3-SCR)to reduce diesel engine exhaust emissions.It has been reported that the Al-rich SSZ-13 zeolite can be used to tune the selectivity of olefins in the MTO reaction,and significantly enhance NO conversions at lower temperatures in NH3-SCR.Thus,the aluminum content and distribution as well as the corresponding acidity in SSZ-13 zeolite determine the catalytic performance of the zeolite for different catalytic reactions.Herein,quantum chemical computing using density functional theory(DFT)combined with multinuclear solid-state nuclearmagnetic-resonance(NMR)experiments were performed to investigate the correlation of Al location and Brønsted acidity of H-SSZ-13 zeolite with the Si/Al ratio varying from 5.8 to 25.The most favorable acid site in the 1Al model is O(1)-H in which a proton is bonded with the O(1)atom near the isolated Al atom of the zeolite framework.Nevertheless,energy differences were rather small when comparing the substitution energies of an Al atom replacing a Si atom in the zeolite framework with a proton located in different O sites.As the Si/Al ratio decreased,the Al-rich SSZ-13 zeolite contained more Al substitutions in its framework.This system exhibited the lowest substitution energy when two Al atoms were located at the diagonal of the same six-membered ring for the Al-Si-Si-Al(NNNN)sequence in the framework of the Al-rich SSZ-13 zeolite.However,for the Al-Si-Al(NNN)sequence,the most favorable distribution involved two Al atoms located in different six-membered rings of the double six-membered ring units(D6R).The proton affinities(PA),NH3 desorption energies,and 1H NMR chemical shifts after d3-acetonitrile adsorption were calculated in the most stable models to characterize the Brønsted acid strength of the SSZ-13 zeolite with different Si/Al ratios.All computing results suggested that the Al-rich SSZ-13 zeolite exhibited weaker Brønsted acid strength than that of the Si-rich counterpart due to the presence of Si(2Al)groupings with the NNN sequence in the framework.Quantitative 29Si magic-angle spinning(MAS)NMR measurements after deconvolution demonstrated that the content of Si(2Al)groupings in the Al-rich SSZ-13 was˃43%.The 1H MAS NMR experiments after d3-acetonitrile adsorption showed that the chemical shift of the bridging hydroxyls in the Al-rich SSZ-13 moved to the lower field,further confirming that it had a weaker Brønsted acid strength than the Si-rich counterpart.
作者 李诗涵 赵侦超 李世坤 邢友东 张维萍 Shihan Li;Zhenchao Zhao;Shikun Li;Youdong Xing;Weiping Zhang(State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,P.R.China)
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2020年第4期76-85,共10页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21872017,21603022) 中央高校基本科研业务费专项资金(DUT17TD04) 大连理工大学超算中心资助。
关键词 密度泛函理论 固体核磁共振 SSZ-13分子筛 Al分布 Brønsted酸性 DFT Solid-state NMR SSZ-13 zeolite Al distribution Brønsted acidity
  • 相关文献

参考文献5

二级参考文献60

  • 1王玉峰,李渊,汤恩旗.SSZ-13分子筛的合成及其表征[J].石油炼制与化工,2010,41(2):11-15. 被引量:8
  • 2Granger, P.; Parvulescu, V. I. Chem. Rev. 2011, 111 (5), 3155. doi: 10.1021/cr100168g.
  • 3Iwamoto, M.; Furukawa, H.; Mine, Y.; Uemura, F.; Mikuriya, S. I.; Kagawa, S. J. Chem. Soc. Chem. Commun. 1986, No. 16, 1272.
  • 4Kwak, J. H.; Tran, D.; Burton, S. D.; Szanyi, J.; Lee, J. H.; Peden, C. H. F. J. Catal. 2012, 287, 203. doi: 10.1016/j.jcat.2011.12.025.
  • 5Fickel, D. W.; D'Addio, E.; Lauterbach, J. A.; Lobo, R. F. Appl. Catal. B: Environ. 2011, 102 (3-4), 441. doi: 10.1016/j.apcatb.2010.12.022.
  • 6Shishkin, A.; Kannisto, H.; Carlsson, P. A.; H? relind, H.; Skoglundh, M. Catal. Sci. Technol. 2014, 4 (11), 3917. doi: 10.1039/C4CY00384E.
  • 7Fickel, D. W.; Lobo, R. F. J. Phys. Chem. C 2009, 114 (3), 1633.
  • 8Meng, X. J.; Xiao, F. S. Chem. Rev. 2014, 114 (2), 1521. doi: 10.1021/cr4001513.
  • 9Kim, D. S.; Chang, J. S.; Hwang, J. S.; Park, S. E.; Kim, J. M. Microporous Mesoporous Mat. 2004, 68 (1), 77.
  • 10Chew, T. L.; Ahmad, A. L.; Bhatia, S. Chem. Eng. J. 2011, 171 (3), 1053. doi: 10.1016/j.cej.2011.05.001.

共引文献29

同被引文献17

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部