摘要
人群密度估计对于人流监控与人群安全具有重要意义。针对现有算法主要通过不同尺度感受野来学习特征,而无法高效利用多尺度特征的问题,文中设计了一个基于通道域注意力机制的特征融合模块。该模块可以在训练模型时学习特征融合的分布情况,以高效利用多尺度特征。此外,为解决人群数据集的样本有限问题,文中采用了多规模数据增广来训练模型。将新模型在Shanghaitech数据集上进行测试,并在陕西省某旅游景区人群计数数据集上进行验证。实验结果显示,基于通道域注意力机制的人群密度估计算法在MAE与MSE上均优于MCNN,证明了该方法在人群密度估计领域具有良好的应用价值。
Population density estimates are important for population flow monitoring and population safety in scenic spots.The existing algorithms mainly learn the features through different scales of receptive fields,and cannot utilize multi-scale features efficiently.Aiming at this problem,a feature fusion module based on the channel domain attention mechanism is designed.This module can learn the distribution of feature fusion when training the model to make efficient use of multi-scale features.In addition,in order to solve the problem that the sample of the crowd data set is very limited,multi-scale data augmentation is used to train the model.The new model was tested on the Shanghaitech dataset and validated on a population density estimation dataset from a tourist attraction in Shaanxi Province,China.The experimental results show that the population density estimation algorithm based on the channel domain attention mechanism is superior to MCNN on MAE and MSE.This method has a good application value in population density estimation.
作者
马骞
MA Qian(Xi’an Vocational and Technical College of Aeronautics and Astronautics,Xi'an 710089,China)
出处
《电子设计工程》
2020年第15期33-37,共5页
Electronic Design Engineering
基金
陕西省教育科学规划课题(SGH17V012)
西安航空职业技术技术学院2019年科研项目(19XHSK-015)。
关键词
人群密度估计
通道域
感受野
多尺度特征融合
注意力机制
population density estimation
channel domain
receptive field
multiscale feature fusion
attention mechanism