期刊文献+

Sequential Feature Screening for Generalized Linear Models with Sparse Ultra-High Dimensional Data

原文传递
导出
摘要 This paper considers the iterative sequential lasso(ISLasso)variable selection for generalized linear model with ultrahigh dimensional feature space.The ISLasso selects features by estimated parameter sequentially iteratively for the second order approximation of likelihood function where the features selected depend on regulatory parameters.The procedure stops when extended BIC(EBIC)reaches a minimum.Simulation study demonstrates that the new method is a desirable approach over other methods.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第2期510-526,共17页 系统科学与复杂性学报(英文版)
基金 supported in part by the National Natural Science Foundation of China under Grant Nos.11571112,11501372,11571148,11471160 Doctoral Fund of Ministry of Education of China under Grant No.20130076110004 Program of Shanghai Subject Chief Scientist under Grant No.14XD1401600 the 111Project of China under Grant No.B14019。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部