期刊文献+

整函数导数的幂次分担的唯一性

Uniqueness of entire function for sharing condition of the power of derivative
下载PDF
导出
摘要 证明了一个关于整函数导数幂次分担条件的唯一性结论,如果f(z)和g(z)是两个非常数整函数,c 1,c 2是两个有穷复数,n,k是两个正整数,且n≥3,若[f(k)(z)]n-c 1和[g(k)(z)]n-c 2在C上IM分担4个互不相同的有穷复数,那么,当c 1≠c 2时,f(z)和g(z)均为次数不超过k的多项式;当c 1=c 2时,f(z)=t ng(z)+p(z),其中t n=1,p(z)为次数不超过k-1的多项式。 In this paper,we prove the uniqueness of sharing condition for the power of the derivative of entire functions.If f(z)and g(z)are two nonconstant entire functions,c1,c2 are two finite complex numbers,n,k are two positive integers and n≥3,suppose[f(k)(z)]n-c1and[g(k)(z)]n-c2 share four different finite complex numbers on by IM,then when c1≠c2,f(z)and g(z)are polynomials with degree no more than k;when c1=c2f(z)=tng(z)+p(z),where tn=1,p(z)is a polynomial with degree no more than k-1.
作者 刘芝秀 尚海涛 邹娓 LIU Zhixiu;SHANG Haitao;ZOU Wei(School of Science,Nanchang Institute of Technology,Nanchang 330099,China;Institute of Technology,East China Jiaotong University,Nanchang 330100,China)
出处 《南昌工程学院学报》 CAS 2020年第3期106-109,共4页 Journal of Nanchang Institute of Technology
基金 江西省教育厅科学技术研究项目(GJJ180944,GJJ190963,GJJ161561) 江西省科技厅科技计划项目(20192BAB211006)。
关键词 唯一性 整函数 分担值 uniqueness entire function shared value
  • 相关文献

参考文献2

二级参考文献12

  • 1仪洪勋.亚纯函数的唯一性和Gross的一个问题[J].中国科学(A辑),1994,24(5):457-466. 被引量:21
  • 2Clunie, J., On a result of Hayman, J. London Math. Soc., 1967, 42: 389-392.
  • 3Fang M.L., Hua X.H., Entire Functions that share one value, J. Nanjing Univ. Math. Biquarterly, 1996, 13(1): 44-48.
  • 4Yang C.C., Hua X.H., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 1997, 22(2): 395-406.
  • 5Fang M.L., Uniqueness and value-sharing of entire functions, Comput. Math. Appl., 2002, 44: 823-831.
  • 6Zhang X.Y., Lin W.C., Uniqueness and vaLue-sharing of entire functions, J. Math. Anal. Appl. 2008, 343: 938-950.
  • 7Zhang Q.C., Meromorphic Functions that shares one small function with its derivative, J. Inequal. Pure Appl. Math., 2005, 6(4): Art.116.
  • 8Lahiri, I., Sarkar, A., Uniqueness of a meromorphic function and its derivative, J. Inequal. Pure Appl. Math., 2004, 5(1): Art. 20.
  • 9Yi H.X., Uniqueness of meromorphic functions and a question of C.C.Yang, Complex Var. Theory Appl., 1990, 14: 169-176.
  • 10Hayman, W.K., Meromorphic Functions, Oxford: Clarendon Press, Oxford: 1964.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部