期刊文献+

粒子群优化的高光谱图像快速稀疏分解算法

Fast Sparse Decomposition Algorithm for Hyperspectral Images Based on Particle Swarm Optimization
下载PDF
导出
摘要 获取高光谱图像的稀疏表示,能够降低原图像信号的数据量,便于对其进行后续处理。正交匹配追踪算法的计算复杂度高、不能满足实时处理要求,借鉴粒子群算法和Hermitian求逆引理的思想,提出了针对高光谱图像的粒子群快速稀疏分解算法。该算法依靠粒子群的局部寻优能力和Hermitian递归求逆对正交匹配追踪算法的匹配过程和残差更新过程进行改进,提高稀疏分解过程的执行效率。实验结果表明,与正交匹配追踪算法相比,在获得相同的重构图像峰值信噪比条件下,所提算法能将计算效率提高约25倍。 Obtaning the sparse representation of hyperspectral image signals can reduce the amount of original data and facilitate the subsequent processing. Since the computational complexity of traditional orthogonal matching pursuit algorithm is too high to be applied to real-time processing,in this paper,a fast sparse decomposition algorithm for hyperspectral images based on the idea of particle swarm optimization and Hermitian inversion lemma is proposed. The proposed algorithm relies on the local search ability of particle swarm optimization and the Hermitian recursive inversion to optimize the matching process and residual updating process in orthogonal matching pursuit algorithm,which leads to improve the computational efficiency. Experimental results show that compared with orthogonal matching pursuit algorithm,the proposed algorithm can improve the computational efficiency by about 25 times under the same reconstructed peak signal-to-noise ratio of hyperspectral images.
作者 王丽 孙长杰 王威 WANG Li;SUN Changjie;WANG Wei(Xi'an Aeronautical University,Xi'an 710077;Chinese Flight Test Establishment,Xi'an 710089)
出处 《舰船电子工程》 2020年第6期101-106,128,共7页 Ship Electronic Engineering
基金 青年科学基金项目(编号:61901350) 陕西省教育厅专项科研计划项目(编号:19JK0432) 西安航空学院校级科研基金项目(编号:2019KY0208,2018KY1222)资助。
关键词 稀疏分解 正交匹配追踪 粒子群优化 Hermitian求逆引理 峰值信噪比 parse decomposition orthogonal matching pursuit particle swarm optimization Hermitian inversion lemma peak signal-to-noise ratio
  • 相关文献

参考文献3

二级参考文献33

  • 1王立国,张晔,谷延锋.支持向量机多类目标分类器的结构简化研究[J].中国图象图形学报(A辑),2005,10(5):571-574. 被引量:20
  • 2赵知劲,郑仕链,尚俊娜,孔宪正.基于量子遗传算法的认知无线电决策引擎研究[J].物理学报,2007,56(11):6760-6766. 被引量:34
  • 3Zhang D,Zhou Z,Chen S. Semi-supervised dimensionality reduction[ C]//Proceedings of the 7th International Con- ference on Data Mining. Omaha, USA: SIAM, 2007: 629-634.
  • 4Chapelle O, Zien A. Semisupervised Classification by Low Density Separation [ C ]//Proceedings of the 10th Interna- tional Workshop on Artificial Intelligence and Statistics. Barbados : AISTATS,2005 : 57-64.
  • 5Zhu X J, Goldberg A B. Introduction to Semi-supervised Learning[ M ]. USA : Morgan & Claypool, 2009 : 30-35.
  • 6Nigam K, Mccallum A K, Thrun S, et al. Text Classifica- tion From Labeled and Unlabeled Documents Using EM [ J ]. Machine Learning, 2000,39 : 103-134.
  • 7Zhu X. Semisupervised learning literature survey[ R]. Com- puter Science TR 1530,USA: University of Wiseonsin, De- paltment of Computer Scienees,2008 : 203-256.
  • 8Shi Q, Zhang L P, Du B. Semisupervised Discriminative Locally Enhanced Alignment for Hyperspectral Image Classification[ J ]. IEEE Transactions on Geoscience and Remote Sensing,2013,51 (9) :4800-4815.
  • 9Marconcini M, Camples-Valls G, Bruzzone L. A Com-posite Semisupervised SVM for Classification of Hyperspectral Imaages [ J ]. IEEE Geoscinence and Remote Sensing Let- ters,2009,6(2) :234-238.
  • 10Zhang H, Berg C, et al. SVM-KNN: discriminative nearest neighbor classification for visual category recognition [ C ]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York: ACM,2006 : 2126-2136.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部