期刊文献+

基于加窗和EEMD的船用柴油机拉缸故障诊断 被引量:2

Fault Diagnosis of Marine Diesel Engine Scuffing Based on Windowing and EEMD
下载PDF
导出
摘要 船用柴油机发生拉缸故障时,其振动信号较为复杂,而且伴有较强的背景噪声,经验模态分解(Empirical Mode Decomposition,EMD)无法有效地诊断出柴油机拉缸故障,为此采用加窗和集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)的方法。以6-135柴油机为研究对象,测取典型工况下机体表面的加速度信号,根据柴油机的结构和配气相位分布,分析确定加速度信号的加窗位置,再将加窗后的信号进行EEMD处理,计算前3阶模态分量的能量值并对重构信号进行频谱分析。结果表明:基于加窗和EEMD的方法可以更加精确有效地实现柴油机拉缸故障的诊断。 When the marine diesel engine has a scuffing,its vibration signal is more complicated,and it is accompanied by strong background noise. The EMD cannot effectively diagnose the diesel scuffing. Therefore,the windowing and EEMD will be using. Taking the 6-135 diesel engine as the research object,the acceleration signal on the surface of the machine body under typical working conditions is measured. According to the structure of the diesel engine and the phase distribution of the gas distribution,the windowing position of the acceleration signal is analyzed and determined,and then the signal after windowing is processed by EEMD. The energy value of the first 3rd order modal components is calculated and the analysis of the reconstructed signal are analyzed. The results show that the method based on windowing and EEMD can realize the diagnosis of diesel scuffing more accurately and effectively.
作者 王宇 张永祥 姚晓山 WANG Yu;ZHANG Yongxiang;YAO Xiaoshan(College of Power Engineering,Naval University of Engineering,Wuhan 430033;Department of Ordnance Technology,Air Force Early Warning Academy,Wuhan 430021)
出处 《舰船电子工程》 2020年第6期149-154,共6页 Ship Electronic Engineering
关键词 船用柴油机 拉缸 EEMD 窗函数 故障诊断 marine diesel engine scuffing EEMD window function fault diagnosis
  • 相关文献

参考文献3

二级参考文献19

  • 1高云超,桑恩方,刘百峰.基于经验模式分解的自适应去噪算法[J].计算机工程与应用,2007,43(26):59-61. 被引量:20
  • 2纪鹏飞.柴油机气阀漏气声发射诊断方法研究[D].武汉:武汉理工大学,2012.
  • 3卢东升.基于声发射信号的柴油机排气阀故障诊断技术研究[D].武汉:武汉理工大学,2011.
  • 4Buckley K, Venkatesan G. Detection and characteriza- tion of cracks for failure monitoring and diagnostics [J]. Acoustics Speech and Signal Processing, 1996, 5 (5) : 2738-2741.
  • 5Fog T L, Hansen L K, Larsen J. Exhaust valve leakage detection in large diesel engines [C]// Proceedings of the llth International Conference on Condition Monitoringand Diasnostic Ensincerin8 Management(COMADgM '98), Launceston, Tasmania, Australia, 1998: 269- 278.
  • 6Fog T L, Hansen L K, Larsen J, et al. On condition monitoring of exhaust valves in marine diesel engines[C]// Neural Networks for Signal Processing IX. Pro- ceedings of the 1999 IEEE Signal Processing Society, Workshop, 1999: 554-563.
  • 7Sikorska J Z, Mba D. Challenges and obstacles in the application of acoustic emission to process machinery [J]. Proceedings of the Institution of Mechanical Engi- neers, Part E: Journal of Process Mechanical Engineer- ing, 2008, 222(1): 1-19.
  • 8Kaewwaewnoi W, Prateepasen A, Kaewtrakulpong P. Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission gener- ated from the leakage [J]. Measurement, 2010, 43: 274-282.
  • 9Kaewwaewnoi W. Theoretical and experimental investi-gation to mesaure internall leakage of fluid through valves using acoustic emission [D]. Thonburi: Department of Production Engineering, King's Mongkut University of Technology, 2008.
  • 10胡以怀,杨叔子,刘永长,周轶尘.柴油机磨损故障振动诊断机理的研究[J].内燃机学报,1998,16(1):50-61. 被引量:49

共引文献16

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部