期刊文献+

Dynamical and allosteric regulation of photoprotection in light harvesting complex Ⅱ

原文传递
导出
摘要 Major light-harvesting complex of photosystemⅡ(LHCⅡ)plays a dual role in light-harvesting and excited energy dissipation to protect photodamage from excess energy.The regulatory switch is induced by increased acidity,temperature or both.However,the molecular origin of the protein dynamics at the atomic level is still unknown.We carried out temperature-jump time-resolved infrared spectroscopy and molecular dynamics simulations to determine the energy quenching dynamics and conformational changes of LHCⅡtrimers.We found that the spontaneous formation of a pair of localα-helices from the 310-helix E/loop and the C-terminal coil of the neighboring monomer,in response to the increased environmental temperature and/or acidity,induces a scissoring motion of transmembrane helices A and B,shifting the conformational equilibrium to a more open state,with an increased angle between the associated carotenoids.The dynamical and allosteric conformation change leads to close contacts between carotenoid lutein 1 and chlorophyll pigment 612,facilitating the fluorescence quenching.Based on these results,we suggest a unified mechanism by which the LHCⅡtrimer controls the dissipation of excess excited energy in response to increased temperature and acidity,as an intrinsic result of intense sun light in plant photosynthesis.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第8期1121-1133,共13页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(21433014,11721404,21533003) the Ministry of Science and Technology(2017YFB0203400) Chinese Academy of Sciences Innovation Program(KJCX2-YW-W25) the National Institutes of Health(GM46736,GM64742)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部