期刊文献+

高调谐效率V型腔可调谐半导体激光器设计与研究 被引量:5

Design and Research of High Tuning Efficiency V-cavity Tunable Semiconductor Laser
下载PDF
导出
摘要 V型腔可调谐半导体激光器由于具备结构简单紧凑、性能优良等特点,在光通讯领域有着较大的应用潜力。然而,由于激光器外延结构热导率相近,用于波长调谐的热量大部分直接流失,激光器无法得到较高的调谐效率。本文通过在调谐区域加入隔热结构,设计了具有高调谐效率的V型腔可调谐激光器。利用由COMSOL Multiphysics建立的V型腔激光器温度模型,分析了隔热结构的加入对激光器各部分的温度影响。通过Rsoft建立的谐振腔光场分布,优化半波耦合器参数,使激光器具有最佳的模式选择性。结果表明,激光器主边模阈值增益差达到6.07 cm-1,调谐效率从0.165 nm/mW提升至0.3 nm/mW。同时,隔热结构的加入不会使激光器其他区域有明显的温升,器件性能受到的负面影响可以忽略。 V-cavity tunable semiconductor laser has great potential in optical network because of its advantages of simplicity,compactness and high performance.However,because the thermal conductivity of epitaxial structure is similar,most of the heat for wavelength tuning is lost directly,and so the tuning efficiency of laser is low.In this paper,a V-cavity laser with high tuning efficiency is designed by adding a heat insulation structure in the tuning region of the laser.Through the temperature model of V-cavity laser built by COMSOL Multiphysics,the effect of adding thermal insulation structure on the temperature of each part of the laser is analyzed.Through the optical field distribution established by Rsoft,the proper half wave coupler parameters are selected,so that the laser has the best mode selectivity.The results show that threshold gain difference between the lowest threshold mode and the next lowest threshold mode is 6.07 cm-1,and the tuning efficiency increases from 0.165 nm/mW to 0.3 nm/mW.Meanwhile,the addition of thermal insulation structure will not cause obvious temperature rise in other areas of the laser,and the negative impact on the device performance can be ignored.
作者 王傲 邹永刚 李明宇 陈拓 常锴 王小龙 宫景丽 石琳琳 范杰 郑舟 马骁 何建军 WANG Ao;ZOU Yong-gang;LI Ming-yu;CHEN Tuo;CHANG Kai;WANG Xiao-long;GONG Jing-li;SHI Lin-lin;FAN Jie;ZHENG Zhou;MA Xiao;HE Jian-jun(State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, China;School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China;State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China)
出处 《发光学报》 EI CAS CSCD 北大核心 2020年第8期977-983,共7页 Chinese Journal of Luminescence
基金 吉林省科技发展计划(20180519018JH,20190302053GX) 吉林省教育厅“十三五”科学技术项目(JJKH20190543KJ)资助。
关键词 半导体激光器 波长可调谐 热效应 隔热结构 semiconductor lasers wavelength tunable thermal effects thermal insulation
  • 相关文献

参考文献2

二级参考文献21

  • 1赵阶林,任广军.液晶电控效应的实验研究[J].液晶与显示,2006,21(4):384-387. 被引量:17
  • 2王小东,吴旭明,王青,曹玉莲,何国荣,谭满清.具有非均匀渐变界面DBR的光学特性分析[J].物理学报,2006,55(10):4983-4986. 被引量:6
  • 3Ishii H, Kasaya K, Oohashi H. Wavelength-tunable lasers for next-generation optical networks [ J ]. NTT Techn. Rev. , 2011, 9(3) :1-6.
  • 4Buus J, Murphy E J. Tunable lasers in optical networks [J]. IEEE J. Lightwave Technol. , 2006, 24( 1 ) :5-11.
  • 5Horikawa K, Yamamoto A, Osada T, et al. Development of ITLA using a full-band tunable laser [ J ]. Furukawa Rev. , 2009, 35 : 1-5.
  • 6Doerr C R, Joyner C H, Stulz L W. 40-wavelength rapidly digitally tunable laser [ J ]. 1EEE Photonics Technol. Lett. , 1999, 11(11) :1348-1350.
  • 7Lei Z H. Latest development trend of optical communications [ J ]. 世界电信, 2000 (12) :6- 10 (in Chinese).
  • 8Henry C H. Theory of linewidth of semiconductor lasers [J]. IEEE J. Quantum Electron. , 1982, 18(2) :259-264.
  • 9Liu A Q, Zhang X M. Review of MEMS external cavity tunable lasers [J]. J. Micromechan. Microengin. , 2007, 17( 1 ) : R1-R13.
  • 10Zorabedian P. Tunable Lasers Handbook [M]. New York: Academic Press, 1995:373.

共引文献5

同被引文献51

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部