期刊文献+

基于通讯数据的社群聚类分析

Analysis of Community Clusters Based on Communication Data
下载PDF
导出
摘要 该文根据现有部分人群的通讯数据,统计并分析所有用户的通话时间和通话次数.根据推导权值计算公式Wij=αcos(→ui,→uj)+βT^2ij/Ti*Tj N^2ij/Ni*Nj计算用户个体个性与用户通话时间和通话次数的加权相关性,构建出相应的权值矩阵,并分别用层次聚类法和K-Means聚类法对所有用户进行聚类,综合分析两种聚类方法,得出已知人群分四类最合适的结论,具体聚类结果见正文. Based on the existing communication data of some people,this paper counts and analyzes the call time and call times of all users.According to the derivation weight calculation formula Wij=αcos(→ui,→uj)+βT^2ij/Ti*Tj N^2ij/Ni*Nj,the weighted correlation between the user's individual personality and the user's call time and call times is calculated,and a corresponding weight matrix is constructed.Then all users are clustered with hierarchical clustering and K-Means clustering,respectively.It is concluded that it is the most suitable to divide the known population into four categories through a comprehensive analysis of the two clustering methods.For the specific clustering results,see the text.
作者 吴建平 詹桢 王涛 文博 杨红超 Wu Jianping;Zhan Zhen;Wang Tao;Wen Bo;Yang Hongchao
机构地区 湖南科技学院
出处 《科教文汇》 2020年第21期107-109,共3页 Journal of Science and Education
基金 永州市2018年度科技创新指导性项目(编号:2018ZD07) 湖南省大学生创新创业训练计划项目(编号:201301702020) 湖南科技学院教改课题(编号:湘科院教发[2018]41(29)) 湖南省教改课题(编号:湘教通[2019]291(849))。
关键词 社群聚类 层次聚类法 K-Means聚类法 community clusters hierarchical clustering K-Means clustering
  • 相关文献

参考文献4

二级参考文献45

  • 1李小霞.近年来国内洛特卡定律研究综述[J].科技情报开发与经济,2005,15(13):27-28. 被引量:87
  • 2樊兴华,孙茂松.一种高性能的两类中文文本分类方法[J].计算机学报,2006,29(1):124-131. 被引量:70
  • 3Lazarsfield P et al. The People's Choice. New York= Columbia University Press, 1948.
  • 4Weimann Gabriel, Tustin Deon Harold, van Vuuren I)aan, Joubert J P R. Looking for opinion leaders Traditional vs. modern measures in traditional societies. International Journal of Public ()pinion Research, 2007, 19(2).- 173 190.
  • 5Matsumura Naohiro, Ohsawa Influence diffusion model in Transactions of the Japanese genee, 2002, 17(3): 259 267 Yukio, Ishizuka Mitsuru text based communication Society for Artificial Intelli.
  • 6Zhou Hengmin, Zeng Daniel, Zhang Changli. Finding leaders from opinion networks//Proceedings of the 2009 IEEE International Conference on Intelligence and Security Informatics(ISI09). DallasTX, USA, 2009 266 268.
  • 7Zhang Jun, Ackerman Mark S, Adamic Lada. Expertise net works in online communities: Structure and algorithms// Proceedings of the 16th International World Wide Web Con [erenee Committee(IW3C2). Ban[f, Canada, 2007:221 230.
  • 8Song Xiaodan, Chi Yun, Hino Koji, Belle Tseng. Identifying opinion leaders in the blogosphere//Proeeedings of the 16th ACM Conference on Information and Knowledge Manage ment(CIKM07). New York, USA, 2007:971-974.
  • 9Zhai Zhongwu, Xu Hua, Jia Peifa. Identifying opinion lead ers in BBS//Proceedings of the IEEE/WIC/ACM Interna tional Conference on Web Intelligence and Intelligent Agent Technology(WI IAT'08). Sydney, NSW, Australia, 2008: 398 401.
  • 10Fan Xing-Hua, Nie Jian-Yun. lank distribution dependency model for document retrieval. Journal of Information Computational Science, 2009, 6(3): 1553-1564.

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部