期刊文献+

Prediction of interphase drag coefficient and bed expansion using a variational model for fluidization of small spherical particles

原文传递
导出
摘要 In this study,we applied the variational model to fluidization of small spherical particles.Fluidization experiments were carried out for spherical particles with 13 diameters between dp=0.13 and 5.00 mm.We propose a generalized form of our variational model to predict the superficial velocity U and interphase drag coefficientβby introducing an exponent n to describe the different dependences of the drag force Fd on fluid velocity for different particle sizes(different flow regimes).By comparing the predictions with the experimental results,we conclude that n=1 should be used for small particles(dp<1 mm)and n=2 for larger particles(dp>1 mm).This conclusion is generalized by proposing n=1 for particles with Ret<160 and n=2 for particles with Ret>160.The average mean absolute error was 5.49%in calculating superficial velocity for different bed voidages using the modified variational model for all of the particles examined.The calculated values ofβwere compared with values of literature models for particles with dp<1.0 mm.The average mean absolute error of the modified variational model was 8.02%in calculatingβfor different bed voidages for all of the particles examined.
出处 《Particuology》 SCIE EI CAS CSCD 2020年第4期184-192,共9页 颗粒学报(英文版)
基金 This work was supported by the Serbian Ministry of Edu-cation,Science and Technological Development(grant number ON172022).
  • 相关文献

二级参考文献16

  • 1Courant, R., & Hilbert, D. (1953). Methods of mathematical physics (Chapter IV: The calculus of variations). New York: Interscience Publishers.
  • 2Day, J. Y., Morgan, M. H., Ill, & Littman, H. (1987). Measurements of spout voidage distributions, particle velocities and particle circulation rates in spouted beds of coarse particles. Chemical Engineering Science, 42, 1461-1470.
  • 3Grbavcic, Z. B., Garic, R. V., Hadzismajlovic, Dz. E., Jovanovic, S., Vukovic, D. V., Littman, H., et al. (1991). Variational model for prediction of the fluid-particle interphase drag coefficient and particulate expansion offluidized and sediment- ing beds. Powder Technology, 68, 199-211.
  • 4Grbavcic, Z. B., Vukovic, D. V., Zdanski, F. K., & Littman, H. (1976). Fluid flow pattern, minimum spouting velocity and pressure drop in spouted beds. The Canadian Journal of Chemical Engineering, 54, 33-42.
  • 5Hildebrand, F. B. (1976). Advanced calculus for applications (2nd ed.). NJ: Prentice Hall. Chapter 7, Section 7.8.
  • 6Littman, H., & Kim, S.J. (1986). The minimum spouting characteristics of small glass particles spouted with water. In K. Ostergaard, & A. Sorensen (Eds.), Fluidization V (pp. 257-264). New York: Engineering Foundation.
  • 7Morgan, M. H., Ill, Day, J. Y., & Littman, H. (1985). Spout voidage distribution, sta- bility and particle circulation rates in spouted beds of coarse particles. Chemical Engineering Science, 40, 1367-1377.
  • 8Weinstock, R. (1974). Calculus of variations (Chapter 8: The Sturm-Liouville problem). New York: Dover Publications Inc.
  • 9Grbavcic, Z. B., Garic, R. V., Vukovic, D. V., Hadzismajlovic, Dz, E., Littman, H., Morgan, M. H., III, et al. (1992). Hydrodynamic modeling of vertical liquid-solids flow. Powder Technology, 72, 183-191.
  • 10Littman, H., & Morgan, M. H., III. (1990, September). A criterion for channeling in bed of fine cohesive particles. In Proceedings of second world congress on particle technology Kyoto, Japan, (pp. 246-252).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部