期刊文献+

Game-theoretical explorations of the mesoscale flow structure and regime transitions in bubble columns 被引量:1

原文传递
导出
摘要 Understanding the mesoscale structure and regime transition in bubble columns is of great significance for reactor design and scaleup.Based on the energy-minimization multiscale(EMMS)model,a noncooperative game model with constraints is proposed to investigate the structural properties of gas-liquid systems in which small and large bubbles are chosen as players and the energy consumption form the objective function.The conservation equations of the system can be regarded as the constraints of the game.For the formulated noncooperative game model,the concept of the generalized Nash equilibrium(GNE)is used to characterize the solution.An algorithm is developed to numerically compute the GNE and some important structural parameters in the system.The numerical results show the existence of the GNE for all values of the superficial gas velocity Ug.As Ug varies,the trends in the state variables can be observed and the critical point of Ug identified.The overall trend of the flow regime transition agrees with the original EMMS model and experimental results,although the GNE calculation also reveals different single-bubble dominant mechanisms with increasing Ug.
出处 《Particuology》 SCIE EI CAS CSCD 2020年第1期100-108,共9页 颗粒学报(英文版)
基金 The authors would like to thank Prof.Lei Guo for his encour-agement and profound insight to realize the game hidden in the EMMS model.The authors also thank Prof.Jinghai Li for his encour-agement and valuable suggestions.The paper is supported by the National Natural Science Foundation of China under Grant 91634203,61304159,11688101,and by the National Center for Mathematics and Interdisciplinary Sciences.
  • 相关文献

参考文献2

二级参考文献1

  • 1刘明言,博士学位论文,1998年

共引文献8

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部