期刊文献+

基于主题模型包含突发因素的推荐算法研究 被引量:2

Research on Recommendation Algorithm Based on Topic Model Containing Bursty Factors
下载PDF
导出
摘要 推荐系统是社交平台个性化服务的重要工具,协同过滤算法由于其推荐的准确性和高效性已经成为推荐领域最经典的算法之一。论文提出一种结合突发话题检测和主题模型的混合协同过滤方法。该算法在语料筛选阶段加入了突发因素,使通过主题模型LDA话题训练的话题具有时效性,然后在低维主题-文档概率分布上计算用户和项目的相似度;最后采用邻域方法预测未知评分。实验表明,该方法适用于微博突发话题的推荐,显著提高了推荐系统的时效性和准确性。 The recommendation system is an important tool for the personalized service of the social platform. The collaborative filtering algorithm has become one of the most classic algorithms in the recommendation field because of its accuracy and efficiency. This paper proposes a hybrid collaborative filtering method combining burst topic detection and topic model. The algorithm adds sudden factors in the corpus screening stage,which makes the topic trained by the topic model LDA topic time-sensitive,and then calculates the similarity between users and projects on the low-dimensional topic-document probability distribution. Finally,the neighborhood-based approach is used to predict the unknown score. Experiments show that the method is suitable for the recommendation of microblogging bursty topics,which significantly improves the timeliness and accuracy of the recommendation system.
作者 严长春 生佳根 於跃成 李君 YAN Changchun;SHENG Jiagen;YU Yuecheng;LI Jun(School of Computer Science and Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003)
出处 《计算机与数字工程》 2020年第6期1304-1308,1366,共6页 Computer & Digital Engineering
关键词 协同过滤 突发话题 主题模型 collaborative filtering bursty topic topic model
  • 相关文献

参考文献6

二级参考文献57

  • 1李军,陈震,黄霁崴.微博影响力评价研究[J].焦息网络安全,2012(3):10-13,27.
  • 2Weng J S, Lim E P, Jiang J, et al. TwitterRank : Finding Topic - sensitive Influential Twitterers[ C]. In: Proceedings of the 3rdACM International Conference on Web Search and Data Mining ( WSDM 2010). New York: ACM,2010:261 -270,.
  • 3Cha M Y, Haddadi H, Benevenuto F, et al. Measuring User Influ- ence in Twitter: The Million Follower Fallacy[ C ]. In: Proceedings of International AAAI Conference on Weblogs and Social Media ( IC-WSM" l0 ) ,Washington. Menlo Park: The AAAI Press ,2010.
  • 4Ye S Z, Wu S F. Measuring Message Propagation and Social hlflu- enee on Twitter. corn [ C ]. In: Proceedings of the 2nd International Conference on Social Informatics (Soclnfo' 10 ). Heidelberg: Springer - Verlag, 2010:216 - 231.
  • 5Ymnaguchi Y, Takahashi T, Amagasa T, et al. TURank: Twitter User Rankir~g Based on User -Tweet Graph Analysis [ C ]. In: Pro- ceedings of the llth International Conference on Web Information Systems Engineering ( WISE' 10 ). Heidelberg, Berlin : Springer - Verla~.2010:240 - 253.
  • 6Blei D M, Lafferty J. Text Mining.. Theory and Applications [M]. Chapter Topic Models, Taylor and Francis, London, 2009.
  • 7Blei D M,Ng A Y,Jordan M I. Latent Dirichlet Allocation[J]. Journal of Maehine Learning Research, 2003,3(4/5) : 993-1022.
  • 8Steyvers M,Griffiths T. Probabilistic Topic Models[M]. Latent Semantic Analysis:A Road to Meaning, Laurence Erlbaum, 2005.
  • 9Heinrich G. Parameter estimation for text analysis[R]. Techni- cal report, http://www, arbylon, net/publications/textest, Ver- sion 2,2008.
  • 10Koller D,Friedman N. Probabilistie Graphical Models: Principles and Techniques[M]. MIT Press, 2009.

共引文献158

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部