摘要
小麦在储藏阶段由于各种灾害导致损失巨大,并降低了面粉质量,及时检测并分离小麦的受损颗粒迫在眉睫。文章以提取4类小麦碰撞声信号为基础,使用数字信号处理方法对小麦完好粒、虫害粒、霉变粒及发芽粒的碰撞声信号提取有效特征,最后利用广义回归神经网络进行分类,对于3类小麦类型的识别取得了较好的识别率。应用结果表明广义回归神经网络能够较好地实现区分受损小麦颗粒与完好小麦颗粒。
In storage stage,a huge number of wheat will loss due to various disasters and the damaged wheat kernels reduce the quality of the flour,it is important to detect and separate the damaged wheat kernels timely. This paper uses digital signal processing method to analyze the impact acoustic signal of un-damaged kernels,IDK(Insect Damaged Kernels),slab-damaged kernels and sprout kernels,some characteristic features of the four types wheat kernels are extracted and the wheat kernels with GRNN Neural Network are classified,a good recognition result of three types wheat kernels in the end is gotten. The research shows that the GRNN Neural Network is useful to the detection and separation of damaged wheat kernels and un-damaged wheat kernels.
作者
张丽娜
马巧梅
ZHANG Lina;MA Qiaomei(School of Computer Science,Baoji University of Arts and Sciences,Baoji 721016)
出处
《计算机与数字工程》
2020年第6期1405-1408,共4页
Computer & Digital Engineering
基金
国家青年科学基金项目(编号:61402015)
陕西省教育厅专项科学研究计划(编号:17JK0911)
宝鸡市科技计划项目(编号:2017JH2-15)
宝鸡文理学院院级重点项目(编号:ZK14027)资助。
关键词
检测方法
碰撞声信号
广义回归神经网络
detection method
impact acoustic signal
GRNN neural network Class Number TP391.42