期刊文献+

基于广义回归神经网络的小麦碰撞声信号分类 被引量:1

Wheat Kernels Impact Acoustic Signal Classification Based on GRNN Neural Network
下载PDF
导出
摘要 小麦在储藏阶段由于各种灾害导致损失巨大,并降低了面粉质量,及时检测并分离小麦的受损颗粒迫在眉睫。文章以提取4类小麦碰撞声信号为基础,使用数字信号处理方法对小麦完好粒、虫害粒、霉变粒及发芽粒的碰撞声信号提取有效特征,最后利用广义回归神经网络进行分类,对于3类小麦类型的识别取得了较好的识别率。应用结果表明广义回归神经网络能够较好地实现区分受损小麦颗粒与完好小麦颗粒。 In storage stage,a huge number of wheat will loss due to various disasters and the damaged wheat kernels reduce the quality of the flour,it is important to detect and separate the damaged wheat kernels timely. This paper uses digital signal processing method to analyze the impact acoustic signal of un-damaged kernels,IDK(Insect Damaged Kernels),slab-damaged kernels and sprout kernels,some characteristic features of the four types wheat kernels are extracted and the wheat kernels with GRNN Neural Network are classified,a good recognition result of three types wheat kernels in the end is gotten. The research shows that the GRNN Neural Network is useful to the detection and separation of damaged wheat kernels and un-damaged wheat kernels.
作者 张丽娜 马巧梅 ZHANG Lina;MA Qiaomei(School of Computer Science,Baoji University of Arts and Sciences,Baoji 721016)
出处 《计算机与数字工程》 2020年第6期1405-1408,共4页 Computer & Digital Engineering
基金 国家青年科学基金项目(编号:61402015) 陕西省教育厅专项科学研究计划(编号:17JK0911) 宝鸡市科技计划项目(编号:2017JH2-15) 宝鸡文理学院院级重点项目(编号:ZK14027)资助。
关键词 检测方法 碰撞声信号 广义回归神经网络 detection method impact acoustic signal GRNN neural network Class Number TP391.42
  • 相关文献

参考文献5

二级参考文献30

  • 1周昊,郑立刚,樊建人,岑可法.广义回归神经网络在煤灰熔点预测中的应用[J].浙江大学学报(工学版),2004,38(11):1479-1482. 被引量:31
  • 2石喜光,郑立刚,周昊,陈习珍,邱坤赞,岑可法.基于广义回归神经网络与遗传算法的煤灰熔点优化[J].浙江大学学报(工学版),2005,39(8):1189-1192. 被引量:9
  • 3魏晋雁,茹锋.采用GRNN模型进行交通量预测及实现研究[J].长沙交通学院学报,2006,22(2):46-50. 被引量:22
  • 4王科俊,李国斌,李殿璞.非线性动态系统辨识的神经网络结构和可行性研究[J].哈尔滨工程大学学报,1997,18(2):52-57. 被引量:2
  • 5Sato M,Kimura Y, Chida S,et al.A novel extraction method of fetal electrocardiogram from the composite abdominal signal[J].IEEE Transactions on Biomedical Engineering, 2007,54( 1 ) : 49-58.
  • 6Nazarpour K,Ebadi S,Sanei S.Fetal electrocardiogram signal modeling using genetic algorithm[CV/Intemational Workshop on Medical Measurements and Applications-MeMeA 2007 Warsaw, Poland,May 4-5,2007 : 1-4.
  • 7Vicente Z,Nandi A K.Noninvasive fetal electrocardiogram extraction:blind separation versus adaptive noise cancellation[J].IEEE Transactions on Biomedical Engineering,2001,48(1 ): 12-18.
  • 8Geman S.Neural networks and the bias/variance dilemma[J].Neural Computation, 1992(4) : 1-58.
  • 9Specht D F.A general regression neural network[J].IEEE Transactions on Neural Networks, 1991,2(6):568-576.
  • 10McSharry P,Clifford G,Tarassenko L,et al.A dynamical model for generating synthetic electrocardiogram signals[J].IEEE Transactions on Biomedical Engineering,2003,50(3):289-294.

共引文献21

同被引文献16

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部