期刊文献+

基于小波变换和样本熵的脑电信号癫痫特征提取 被引量:2

EEG Epileptic Feature Extraction Based on Wavelet Transform and Sample Entropy
下载PDF
导出
摘要 癫痫发作时的脑电信号(EEG)中含有大量的癫痫特征波信息,特征波形是确定癫痫是否发作的重要依据。小波变换可以对信号进行多分辨率分解,将信号分解成不同频率的含有特征信息的细节信号。癫痫发作时,脑电信号的复杂性会降低,样本熵可以表示信号系统的复杂程度。论文采用小波变换(wavelet transform)和样本熵(sample entropy)结合的分析方法,首先运用小波变换分别对正常状态、癫痫发作间期和发作期的脑电信号进行多分辨率分解,提取出含有特征信息的子频带,然后对子频带求样本熵。实验结果表明,此方法可以有效地提取出含有尖波(sharp wave)、棘波(spike wave)等癫痫特征信息。 EEG contains a large number of epileptic characteristic wave in epileptic seizures,the characteristic waveform is an important basis for determining whether epileptic seizures occur. The wavelet transform can decompose the signal with multi-resolution and decompose the signal into detailed signals with different frequency and characteristic information. The complexity of EEG signals will be reduced during epileptic seizures,sample entropy can indicate the complexity of the signal system. In this paper,a method combining wavelet transform with sample entropy is applied. First,wavelet transform is used to decompose the EEG signal in normal state,interictal interval and attack phase,then the sample entropy is calculated for the subband. Experimental results show that this method can effectively extract spike and spike characteristics.
作者 宋玉龙 赵冕 郑威 SONG Yulong;ZHAO Mian;ZHENG Wei(College of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang 212003)
出处 《计算机与数字工程》 2020年第6期1423-1427,共5页 Computer & Digital Engineering
关键词 癫痫脑电信号 小波变换 样本熵 epileptic EEG wavelet transform sample entropy
  • 相关文献

参考文献10

二级参考文献53

共引文献57

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部