期刊文献+

基于多层分类器的恶意网页检测技术研究 被引量:3

Research on Malicious Webpage Detection Technology Based on Multi-Layer Classifier
下载PDF
导出
摘要 互联网为人类社会带来便利的同时,也存在很多网络安全问题,例如钓鱼攻击、恶意软件、隐私泄露等。恶意网页在这些网络攻击中扮演重要的角色。针对网页不同层次特征,设计多层次的分类器检测模型。该模型采用CNN-GRU神经网络处理URL数据,采用随机森林算法处理网页特征数据,综合两个输出进行判定。实验证明,多层次检测模型识别准确率达到99%以上、且拥有更好的稳定性、更快的收敛性。 While the Internet brings convenience to human society,there are also many network security issues,such as phishing attacks,malware,and privacy leaks.Malicious web pages play an important role in these cyber attacks.The article designs a multi-level classifier detection model for different levels of webpage features.This model uses CNN-GRU neural network to process URL data,random forest algorithm to process webpage characteristic data,and combines the two outputs to determine.Experiments prove that the recognition accuracy of the multi-level detection model is more than 99%,and it has better stability and faster convergence.
作者 张士坤 ZHANG Shi-kun(School of Computers,Guangdong University of Technology,Guangzhou 510006)
出处 《现代计算机》 2020年第18期64-68,共5页 Modern Computer
关键词 恶意网页 神经网络 随机森林 Malicious Web Page Neural Networks Random Forest
  • 相关文献

参考文献4

二级参考文献21

  • 1Sheng S,Weidman B,Warner G,et al.An empirical analysis of phishing blacklists[C]//the Sixth Conference on Email and Anti-Spam,California USA,2009:112-118.
  • 2Cranor L,Egelman S,Hong J,et al.Phinding phish:Evaluating antiphishing tools[C]//the 14th Annual Network and Distributed System Security Symposium,2007:381-192.
  • 3Blum A,Warden B,Solaria T,et a1.Lexical Feature based Phishing URL Detection using online Learning[C]//the AISec'10,Chicago USA,2010:54-60.
  • 4Ma J,Kabul L,Savage S,et a1.Beyond b1ackhsts:Learning to detect malicious web sites from suspicious URLs[C]//the KDD'09,Paris France,2009:1245-1254.
  • 5Thomas K,Grier C,Ma J,et a1.Design and evaluation of a real-time URL spam filtering service[C]//the IEEE Symposium on Security and Privacy,California USA,2011:376-382.
  • 6Han Weili,Cao Ye,Elisa Bertino,et al.Using automated individual white-list to protect web digital identities[J].Expert Systems with Applications,2012(39):11861-11869.
  • 7Zhuang W,Jiang Q.Intelligent anti-phishing framework using multiple classifiers combination[J].Journal of Computational Information Systems,2012,8(17):7267-7281.
  • 8Sanglerdsinlapachai N,Rungsawang A.Using domain toppage similarity feature in machine learning-based web phishing detection[C]//the Third International Conference on Knowledge Discovery and Data Mining,Phuket,2010:187-190.
  • 9Santhana L V,Vijaya M S.Efficient prediction of phishing websites using supervised learning algorithms[J].Procedia Engineering,2012(30):798-805.
  • 10He Mingxing,Horng Shi-Jinn.An efficient phishing webpage detector[J].Expert Systems with Applications,2011(38):12018-12027.

共引文献22

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部