期刊文献+

High-purity, low-Cl V2O5 via the gaseous hydrolysis of VOCl3 in a fluidized bed 被引量:2

原文传递
导出
摘要 Present-day all-vanadium redox flow batteries(VRFBs)generally require high purity vanadium oxide as a raw ingredient.The chlorination procedure presents distinct technical advantages with regard to preparing high purity vanadium pentoxide(V2O5)using vanadium oxytrichloride(VOCl3)as a highly pure intermediate.To efficiently prepare high purity V2Os from VOCl3,a single-step fluidized bed chemical vapor deposition(FBCVD)method was explored in the present work.Based on thermodynamic analyses,the direct and complete conversion of VOCl3 to V2O5 is difficult,and may result in a small amount of residual Cl in the product.Consequently,the effects of temperature and the H2O/VOCl3 molar ratio on the quantity of residual Cl were assessed.The Cl concentration was found to decrease with increasing temperature or increasing H2O/VOCl3 molar ratios.Additionally,Cl was determined to be present only in the form of Cl-V bonds,while Cl-H and Cl-Cl bonds were not detected in a V2O5 product made at 200℃with a H2O/VOCl3 molar ratio of 18.A Cl concentration of less than 0.05 wt%was obtained under the optimal synthesis conditions,demonstrating that the FBCVD method is a viable means of preparing high purity V2O5 via the gaseous hydrolysis of VOCl3.
出处 《Particuology》 SCIE EI CAS CSCD 2020年第2期9-15,共7页 颗粒学报(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Project Nos.51774262,51504231,51504232,and 21736010) the Open Project of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(Project No.CNMRCUKF1704).
  • 相关文献

参考文献1

二级参考文献31

  • 1Beard, M. C, & Ellingson, R j. (2008). Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion. Laser & Photonics Reviews, 2, 377-399.
  • 2Chen,J. (1996). Thermodynamic analysis of a solar-driven thermoelectric generator. Journal of Applied Physics, 79(5),2717-2721.
  • 3Crabtree, G. W., & Lewis, N. S. (2007). Solar energy conversion. Physics Today, 60, 37-42.
  • 4Demirbas, M. F. (2006). Thermal energy storage and phase change materials: An overview. Energy Sources, Part B, 1(1),85-95.
  • 5Hanna, M. C, & Nozik, A. J. (2006). Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics, 100(7),074510.
  • 6Henry, C H. (1980). Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of Applied Physics, 51(8), 4494-4500.
  • 7Imenes, A. G., & Mills, D. R. (2004). Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review. Solar Energy Materials and Solar Cells, 84( 1-4), 19-69.
  • 8Kovalenko, M. V., Spokoyny, B., Lee, J.-S., Scheele, M., Weber, A., Perera,S., et al. (2010). Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. Journal of the American Chemical Society, 132, 6686-6695.
  • 9Kraemer, D., Hu, L., Muto, A., Chen, X., Chen, G., & Chiesa, M. (2008). Photovoltaicthermoelectric hybrid systems: A general optimization methodology. Applied Physics Letters, 92(24), 243503.
  • 10Li, C H., Zhu, X.J, Cao, G. Y., Sui,S., & Hu, M. R (2009). Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renewable Energy, 34(3), 815-826.

共引文献1

同被引文献33

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部