期刊文献+

基于深度学习的视觉SLAM综述 被引量:21

A Survey on Visual SLAM based on Deep Learning
下载PDF
导出
摘要 随着计算机视觉和机器人技术的发展,视觉同时定位与地图创建已成为无人系统领域的研究焦点,深度学习在图像处理方面展现出的强大优势,为二者的广泛结合创造了机会。总结了深度学习与视觉里程计、闭环检测和语义同时定位与地图创建结合的突出研究成果,对传统算法与基于深度学习的方法做了对比,展望了基于深度学习的视觉同时定位与地图创建发展方向。 Following the development of computer vision and robotics,visual Simultaneous Localization and Mapping becomes a research focus in the field of unmanned systems.The powerful advantages of deep learning in the image processing offer a huge opportunity to the wide combination of the two fields.The outstanding research achievements of deep learning combined with visual odometry,loop closure detection and semantic Simultaneous Localization and Mapping are summarized.A comparison between the traditional algorithm and method based on deep learning is carried out.The development direction of visual Simultaneous Localization and Mapping based on deep learning is forecasted.
作者 刘瑞军 王向上 张晨 章博华 Liu Ruijun;Wang Xiangshang;Zhang Chen;Zhang Bohua(Beijing Key Laboratory of Big Data Technology for Food Safety,School of Computer and Information Engineering,Beijing Technology and Business University,Beijing 100048,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2020年第7期1244-1256,共13页 Journal of System Simulation
基金 北京市自然科学基金(4202016,9192008) 教师队伍建设-创新团队(IDHT20180507)。
关键词 视觉同步定位与地图创建 深度学习 视觉里程计 闭环检测 语义同步定位与地图创建 deep learning Visual Simultaneous Localization and Mapping visual odometry loop closure detection semantic Simultaneous Localization and Mapping
  • 相关文献

参考文献2

二级参考文献88

  • 1Smith R C, Cheeseman P. On the representation and estimationof spatial uncertainty[J]. International Journal of Robotics Research,1986, 5(4):56-68.
  • 2Smith R, Self M, Cheeseman P. Estimating uncertain spatialrelationships in robotics[M] //Autonomous Robot Vehicles. NewYork: Springer, 1990: 167-193.
  • 3Durrant-Whyte H, Bailey T. Simultaneous localization andmapping: Part I[J]. IEEE Robotics & Automation Magazine,2006, 13(2): 99-110.
  • 4Bailey T, Durrant-Whyte H. Simultaneous localization andmapping(SLAM): Part II[J]. IEEE Robotics & AutomationMagazine, 2006, 13(3): 108-117.
  • 5Hartley R, Zisserman A. Multiple view geometry in computervision[M]. Cambridge: Cambridge University Press, 2004.
  • 6Aulinas J, Petillot Y R, Salvi J, et al. The SLAM problem: asurvey[J]. CCIA, 2008, 184(1): 363-371.
  • 7Ros G, Sappa A, Ponsa D, et al. Visual SLAM for driverlesscars: a brief survey[C] //Proceedings of IEEE Workshop onNavigation, Perception, Accurate Positioning and Mapping forIntelligent Vehicles. Los Alamitos: IEEE Computer SocietyPress, 2012: Article No.3.
  • 8Triggs B, Mclauchlan P F, Hartley R I, et al. Bundle adjustment -a modern synthesis[C] //Proceedings of International Workshopon Vision Algorithms: Theory and Practice. Heidelberg: Springer,1999: 298-372.
  • 9Indelman V, Williams S, Kaess M, et al. Information fusion innavigation systems via factor graph based incremental smoothing[J]. Robotics and Autonomous Systems, 2013, 61(8): 721-738.
  • 10Forster C, Carlone L, Dellaert F, et al. IMU preintegration onmanifold for efficient visual-inertial maximum-a-posterioriestimation [C] //Proceedings of Robotics: Science and Systems.Rome: Robotics: Science and Systems, 2015: Article No.6.

共引文献173

同被引文献203

引证文献21

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部