期刊文献+

ICP优化下的B样条四维CT图像弹性配准方法 被引量:1

ICP Optimized B-Spline Non-Rigid Registration for 4D-CT Images
下载PDF
导出
摘要 为提高不同生理状态下两组四维CT图像之间配准的精度和速度,基于多分辨率B样条的自由形变模型(Free Form Deformation, FFD),提出一种使用迭代最近点(Iterative Closest Point,ICP)优化该模型的配准算法。在传统B样条之前加入ICP算法实现两组四维CT图像间的点云配准:根据分割完的两组四维CT图像生成点云数据和灰度数据,使用ICP对模型中的两组点云配准。level1,level 2,level 3相似性测度提高率分别为:8.68%,10.46%,2.39%,速度提高率分别为:–51.89%,41.71%,81.09%,结果证明新模型在不同控制网格大小配准上精度和速度都有提高。 In order to improve the accuracy and speed of registration between two groups of 4D-CT images under different physiological activities,based on FFD model of multi-resolution B-spline,a registration algorithm using ICP to optimize the model is proposed.The ICP algorithm is added before the traditional b-spline to realize the point cloud registration between two groups of 4D-CT images:the appropriate model is generated from the two segmented groups of 4D-CT images,then the two groups of point clouds in the model are registered with ICP.The improvement rates of similarity measurement at level 1,level 2 and level 3 are 8.68%,10.46%and 2.39%respectively,and the speed improvement rates are-51.89%,41.71%,81.09%respectively.
作者 汤雯洁 李若桐 邓雪松 司伟鑫 王琼 Tang Wenjie;Li Ruotong;Deng Xuesong;Si Weixin;Wang Qiong(Wu Han University of Technology,Wuhan 430070,China;Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences,Shenzhen 518500,China;Shenzhen second people's hospital,Shenzhen 100730,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2020年第7期1301-1311,共11页 Journal of System Simulation
基金 国家自然科学基金(U1813204,61802385,61802386) 广州市科技计划(201704020141)。
关键词 ICP B样条 非刚性配准 CT图像 ICP B-spline Non-rigid registration CT images
  • 相关文献

参考文献5

二级参考文献52

  • 1李洪波.共形几何代数——几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393. 被引量:36
  • 2李洪波.共形几何代数与运动和形状的刻画[J].计算机辅助设计与图形学学报,2006,18(7):895-901. 被引量:20
  • 3吴月娥,王小喜,哈章,李传富,周平,周康源.基于薄板样条和形状内容的医学图像非刚性配准方法研究[J].航天医学与医学工程,2007,20(1):43-46. 被引量:5
  • 4杨健,王涌天,唐宋元,周寿军,刘越.基于互信息量和薄板样条的X射线造影图像弹性配准[J].电子学报,2007,35(1):127-130. 被引量:4
  • 5Brown L G.A survey of image registration techniques[J].ACMComputing Surveys (CSUR),1992,24(4):325-376.
  • 6田捷,戴晓倩,杨 飞.医学成像与医学图像处理教程[M].北京:清华大学出版社,2013.152-229.
  • 7Wein W,Brunke S,Khamene A,etal.Automatic ct-ultrasound registration for diagnostic imaging and image-guided intervention[J].Medical Image Analysis,2008,12 (5):577-585.
  • 8Rueckert D,Sonoda L I,Hayes C,etal.Nonrigid registration using free-form deformations:application to breast MR images[J].IEEE Transactions on Medical Imaging,1999,18(8):712-721.
  • 9Roche A,Pennec X,Malandain G,et al.Rigid registration of 3-d ultrasound with MR images:a new approach combining intensity and gradient information[J].IEEE Transactions on Medical Imaging,2001,20(10):1038-1049.
  • 10Tanner C,Karssemeijer N,Székely G.Deformation models for registering MR and 3d ultrasound breast images[C].IEEE International Symposium on Biomedical Imaging:From Nano to Macro,2011.582-585.

共引文献24

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部