期刊文献+

Javascript代码混淆的检测和反混淆应用研究 被引量:2

A Research on Obfuscation Detection and Deobfuscation of JavaScript Code
下载PDF
导出
摘要 随着javascript代码混淆技术的迅速发展,让夹杂在WEB应用中恶意脚本逃避检测的能力变得越来越突出,风险隐患越来越大。本文主要分析了当前常见的javascript代码混淆方式,按它们所采用的技术手段尝试对其做了简单的分类,对混淆检测方法提出一些改进。同时基于编译器实现了一个简易的javascript反混淆算法,从测试结果来看它应该能够为Javascript脚本混淆检测的优化提供一定的帮助。 With the rapid development of the obfuscation technology of JavaScript code,the ability of malicious scripts embedded in WEB applications to evade detection has become more and more prominent,and the potential risks have become greater and greater.This paper mainly analyzes some JavaScript code obfuscation methods commonly used now and tries to provide simple classification based on the technical means adopted.Some improvements are suggested to the obfuscation detection methods.In addition,a simple JavaScript de-obfuscating algorism is implemented based on the compiler and it can be told from the test results that the algorism should be able to provide some help for the optimization of JavaScript obfuscation detection。
作者 崔莹 CUI Ying(Department of Information Engineering,Tongling Polytechnic,Tongling 244061,Anhui)
出处 《集宁师范学院学报》 2020年第3期7-11,共5页 Journal of Jining Normal University
基金 安徽省高等学校质量工程项目“Javascript前端开发”(2018mooc230) 铜陵职业技术学院自然科研项目“基于机器学习javascript检测”(tlpt2019NK004)。
关键词 javascirpt反混淆 deobfuscate esprima JavaScript deobfuscation deobfuscate esprima
  • 相关文献

参考文献2

二级参考文献14

  • 1Cova M, Kruegel C, Vigna G. Detection and analysisof drive-by-download attacks and malicious javascript- code[C] // Proceedings of the 19th International Con- ference on World Wide Web. New York: ACM, 2010: 2812290.
  • 2Microsoft Corporation. Microsoft security intelligence report: volumelT[R]. Redmond: Microsoft Corpora- tion, 2014.
  • 3Sophos Corporation. Security threat report 2014[R]. Burlington: Sophos Corporation, 2014.
  • 4Symantec Corporation. Internet security threat re- port: volume 19[R~. Mountain: Symantec Corpora tion, 2014.
  • 5Wang Junjie, Xue Yinxing, Liu Yang, et al. JSDC: a hybrid approach for JavaScript malware detection and classification[C] // Proceedings of the 10th ACM Symposium on Information, Computer and Communi- cations Security. New York: ACM, 2015:109 120.
  • 6Jayasinghe G K, Bertok P. Efficient and effective re- altime prediction of drive-by download attacks[J]. Journal of Network and Computer Applications, 2014, 38(2): 135-149.
  • 7Rieck K, Krueger T, Dewald A. Cujo: efficient de- tection and prevention of drive-by-download attacks I-C]//Proceedings of the 26th Annual Computer Se- curity Applications Conference. New York.. ACM, 2010: 31-39.
  • 8Zhang Haibo, Zuo Chaoshun, Guo Shanqing, et al. SafeBrowsingCloud: detecting drive-by-downloads at- tack using cloud computing environment[M~. Berlin: Springer, 2014: 292-303.
  • 9Cao Yinzhi, Pan Xiang, Chen Yan, et al. JShield: towards real-time and vulnerability-based detection of polluted drive-by download attacks[C~ // Proceedings of the 30th Annual Computer Security Applications Conference. New Orleans: ACM, 2014: 466-475.
  • 10Stringhini G, Kruegel C, Vigna G. Shady paths: le- veraging surfing crowds to detect malicious web pa- ges[C] // Proceedings of the 2013 ACM SIGSAC Conference on Computer ~ Communications Securi- ty. New York: ACM, 2013: 133-144.

共引文献2

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部