期刊文献+

EEG情感识别中基于集成深度学习模型的多分析域特征融合 被引量:16

Multi-analysis domain feature fusion of EEG emotion recognition based on integrated deep learning model
原文传递
导出
摘要 提出一种基于集成深度学习模型的情感状态检测方法.首先从脑电信号的时域、频域和时频域中提取4种表征情绪状态显著信息的初始特征;然后使用胶质细胞链改进的深度信念网络分别提取这些特征的高层抽象表示;最后利用判别式受限玻尔兹曼机对高层抽象特征进行融合,进行情感状态预测.在DEAP数据集上进行的实验显示,胶质链能够挖掘和利用EEG不同通道之间的相关性信息,而集成深度学习模型能够有效集成EEG信号在时域、频域和时频域蕴含的情感状态相关的显著性信息. An emotion recognition method based on the integrated deep learning model is presented.Firstly,four kinds of raw features are extracted from the time domain,frequency domain and time-frequency domain of electroencephalogram(EEG)signals.Then,the high-level representations of these features are extracted respectively by using deep belief networks with glia chains.Finally,the high-level representations are fused by a discriminative restricted Boltzmann machine to implement emotion recognition task.Experiments are conducted on the DEAP dataset.The results show glia chains can mine inter-channel correlation information and the complementary models can integrate the four kinds of raw features effectively.
作者 晁浩 刘永利 连卫芳 CHAO Hao;LIU Yong-li;LIAN Wei-fang(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第7期1674-1680,共7页 Control and Decision
基金 国家自然科学基金项目(61502150) 河南省高等学校重点科研计划项目(19A520004) 河南省科技攻关项目(172102210279)。
关键词 情感识别 多通道脑电 深度学习 深度信念网络 特征融合 受限玻尔兹曼机 emotion recognition multi-channel electroencephalogram deep learning deep belief networks feature fusion restricted Boltzmann machine
  • 相关文献

参考文献1

二级参考文献29

  • 1Kruger N, Janssen P, Kalkan S, Lappe M, Leonardis A, Pi- ater J, Rodriguez-Sanchez A J, Wiskott L. Deep hierarchies in the primate visual cortex: what can we learn for com- puter vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1847-1871.
  • 2Hinton G E, Salakhutdinov R R. Reducing the dimensional- ity of data with neural networks. Science, 2006, 313(5786): 504-507.
  • 3Hinton G E, Osindero S, Teh Y W. A fast learning algo- rithm for deep belief nets. Neural Computation, 2006, 18(7): 1527-1554.
  • 4Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In: Proceedings of Ad- vances in Neural Information Processing Systems 19. Cam- bridge: MIT Press, 2007. 153-160.
  • 5Lee H, Grosse R, Ranganath R, Ng A Y. Unsupervised learn- ing of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 2011, 54(10): 95-103.
  • 6Huang G B, Lee H, Learned-Miller E. Learning hierarchi- cal representations for face verification with convolutional deep belief networks. In: Proceedings of the 2012 IEEE Con- ference on Computer Vision & Pattern Recognition. Provi- dence, RI: IEEE, 2012. 2518-2525.
  • 7Liu P, Han S Z, Meng Z B, Tong Y. Facial expression recog- nition via a boosted deep belief network. In: Proceedings of the 2014 IEEE Conference on Computer Vision & Pattern Recognition. Columbus, OH: IEEE, 2014. 1805-1812.
  • 8Roy P P, Chherawala Y, Cheriet M. Deep-belief-network based rescoring approach for handwritten word recognition. In: Proceedings of the 14th International Conference on Frontiers in Handwriting Recognition. Heraklion: IEEE, 2014. 506-511.
  • 9Mohamed A R, Dahl G E, Hinton G. Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, & Language Processing, 2012, 20(1): 14-22.
  • 10Kang S Y, Qian X J, Meng H L. Multi-distribution deep be- lief network for speech synthesis. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver, BC: IEEE, 2013. 8012-8016.

共引文献8

同被引文献133

引证文献16

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部