摘要
数据包络分析(DEA)已被证明是测度地区研究与试验发展(R&D)投入绩效的好方法,对地区研究与试验发展投入带来的效益回馈至两个阶段进行分析,可以保证研发的持续性。因此,结合研究与试验发展投入过程的特征,将其分为直接产出和社会经济产出两阶段,提出DEA的两阶段效率模型,不仅拓展了数据包络分析方法,也促进了地区研究与试验发展投入绩效管理研究。实证结果表明,我国各地区研究与试验发展投入绩效差异大,省际发展不均衡,各省内部不同阶段效率也存在明显差异,实施有针对性的管理是提升绩效的有效措施。
Data Envelopment Analysis (DEA) has been proven to be a good method for measuring the performance of regional R&D investment.It can guarantee the sustainability of R&D by analyzing the benefit feedback of regional R&D investment in two stages.Therefore,in light of the characteristics of the R&D investment process,it can be divided into the two stages of direct output and socio-economic output,and accordingly,a two-stage efficiency model of DEA is proposed,which not only expands the DEA method,but also enhances studies of the R&D investment performance management.The empirical results show that there are great differences in the performance of R&D investment in different regions,unbalanced development between provinces,and obvious differences in the efficiency of different stages within each province.Introducing targeted management is an effective measure to improve performance.
出处
《学术前沿》
CSSCI
北大核心
2020年第11期104-107,共4页
Frontiers