期刊文献+

BAM: A Block-Based Bayesian Method for Detecting Genome-Wide Associations with Multiple Diseases 被引量:1

BAM: A Block-Based Bayesian Method for Detecting Genome-Wide Associations with Multiple Diseases
原文传递
导出
摘要 Many human diseases involve multiple genes in complex interactions.Large Genome-Wide Association Studies (GWASs) have been considered to hold promise for unraveling such interactions.However,statistic tests for high-order epistatic interactions (≥2 Single Nucleotide Polymorphisms (SNPs)) raise enormous computational and analytical challenges.It is well known that the block-wise structure exists in the human genome due to Linkage Disequilibrium (LD) between adjacent SNPs.In this paper,we propose a novel Bayesian method,named BAM,for simultaneously partitioning SNPs into LD-blocks and detecting genome-wide multi-locus epistatic interactions that are associated with multiple diseases.Experimental results on the simulated datasets demonstrate that BAM is powerful and efficient.We also applied BAM on two GWAS datasets from WTCCC,i.e.,Rheumatoid Arthritis and Type 1 Diabetes,and accurately recovered the LD-block structure.Therefore,we believe that BAM is suitable and efficient for the full-scale analysis of multi-disease-related interactions in GWASs. Many human diseases involve multiple genes in complex interactions.Large Genome-Wide Association Studies (GWASs) have been considered to hold promise for unraveling such interactions.However,statistic tests for high-order epistatic interactions (≥2 Single Nucleotide Polymorphisms (SNPs)) raise enormous computational and analytical challenges.It is well known that the block-wise structure exists in the human genome due to Linkage Disequilibrium (LD) between adjacent SNPs.In this paper,we propose a novel Bayesian method,named BAM,for simultaneously partitioning SNPs into LD-blocks and detecting genome-wide multi-locus epistatic interactions that are associated with multiple diseases.Experimental results on the simulated datasets demonstrate that BAM is powerful and efficient.We also applied BAM on two GWAS datasets from WTCCC,i.e.,Rheumatoid Arthritis and Type 1 Diabetes,and accurately recovered the LD-block structure.Therefore,we believe that BAM is suitable and efficient for the full-scale analysis of multi-disease-related interactions in GWASs.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2020年第5期678-689,共12页 清华大学学报(自然科学版(英文版)
关键词 disease association study EPISTASIS Linkage Disequilibrium(LD)block Bayesian methods disease association study epistasis Linkage Disequilibrium(LD) block Bayesian methods
  • 相关文献

参考文献1

二级参考文献2

共引文献1

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部