期刊文献+

时序数据集构建质量对土地覆盖分类精度的影响研究 被引量:5

Influence of Time Series Data Quality on Land Cover Classification Accuracy
原文传递
导出
摘要 研究通过对MODIS双星数据组合、线性插值和HANTS平滑方法来提升时序数据集质量,采用随机森林的方法分类,对分类结果精度评定以分析时序数据集构建质量对分类精度的影响。结果表明:双星数据有利于提高时序数据集的时间分辨率,精确刻划覆盖变化,为后续处理提供基础;线性插值可改善像元点的质量,降低云、雨因素影响;HANTS平滑能移除异常值,平滑数据,突出曲线特征,降低分类复杂度。改进质量后的时序数据集,分类总体精度从84.32%提高至90.75%,Kappa系数从0.798 6提高至0.881 6。总之,使用时序数据进行土地覆盖分类时,应以消除异常值,真实反映地表覆盖物候特征为目的提高时序数据集的质量,从而提高分类精度。 This paper improved the quality of time series data sets through threemethods double star data combination of MODIS,linear interpolation and HANTS smoothing. In this study,we used random forest classification and analyzed the impact of the quality of time series dataset construction on classification accuracy though evaluating the accuracy of classification results. Results showed that the double-star data was beneficial to improve the temporal resolution of time series dataset,accurately depict the coverage change,and provide the basis for subsequent processing;linear interpolation could improve the quality of pixel points and reduce the influence of cloud and rain factors;HANTS smoothing could remove outliers,smooth data,highlight curve features,and reduce classification complexity. After improving the quality of the time series data set,the overall classification accuracy increased from 84.32% to 90.75%,and the Kappa coefficient increased from 79.86% to 88.16%. In a word,when using time series data for land cover classification,the quality of the time series data set should be improved to eliminate the outliers and truly reflect the surface covering phenological features,and the classification accuracy of the results should be improved.
作者 董超 赵庚星 Dong Chao;Zhao Gengxing(College of Information Science And Engineering,Shandong Agricultural University,Tai'an 271018,China;College of Resources and Environment,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources,Shandong Agricultural University,Tai'an 271018,China)
出处 《遥感技术与应用》 CSCD 北大核心 2020年第3期558-566,共9页 Remote Sensing Technology and Application
基金 “十二五”国家科技支撑计划项目(2015BAD23B0202) “双一流”奖补资金(SYL2017XTTD02)。
关键词 MODIS 时间序列 HANTS 精度评价 随机森林 MODIS Time series HANTS Accuracy assessment Random forest
  • 相关文献

参考文献3

二级参考文献46

共引文献98

同被引文献101

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部