期刊文献+

Preserving Personalized Location Privacy in Ride-Hailing Service 被引量:5

原文传递
导出
摘要 Ride-hailing service has become a popular means of transportation due to its convenience and low cost.However,it also raises privacy concerns.Since riders’mobility information including the pick-up and drop-off location is tracked,the service provider can infer sensitive information about the riders such as where they live and work.To address these concerns,we propose location privacy preserving techniques that efficiently match riders and drivers while preserving riders’location privacy.We first propose a baseline solution that allows a rider to select the driver who is the closest to his pick-up location.However,with some side information,the service provider can launch location inference attacks.To overcome these attacks,we propose an enhanced scheme that allows a rider to specify his privacy preference.Novel techniques are designed to preserve rider’s personalized privacy with limited loss of matching accuracy.Through trace-driven simulations,we compare our enhanced privacy preserving solution to existing work.Evaluation results show that our solution provides much better ride matching results that are close to the optimal solution,while preserving personalized location privacy for riders.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2020年第6期743-757,共15页 清华大学学报(自然科学版(英文版)
  • 相关文献

同被引文献21

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部