期刊文献+

基于双目深度图像的自动扶梯乘客危险行为识别与预警系统 被引量:11

A Passenger Dangerous Behavior Recognition and Early Warning System of Escalator Based on RGB-D Sensor
原文传递
导出
摘要 基于双目深度视觉传感器,设计了一种融合双目立体匹配算法和深度神经网络模型的方法,针对乘客危险行为识别与预警的需求,构建了一套可应用于自动扶梯场景的乘客危险行为识别与预警系统。实验结果表明,该系统能有效识别乘客摔倒、逆行、探头、出入口滞留以及携带婴儿车和大件行李等多种危险行为,并能自动预警。 Based on the binocular depth(RGB-D)sensor,a method of integrating binocular stereo matching algorithm and depth neural network model is designed.Aiming at the needs of passenger dangerous behavior recognition and early warning,a set of passenger dangerous behavior recognition and early warning system which can be applied to escalator scene is constructed.The experimental results show that the system can effectively identify various dangerous behaviors,such as passenger falling,retrograde,probe,entrance and exit detention,carrying pram and heavy luggage,and can automatically warn.New ideas and solutions for improving the operation safety of escalators are provided.
作者 欧阳惠卿 舒文华 李行 李杨 OUYANG Huiqing;SHU Wenhua;LI Xing;LI Yang
出处 《中国电梯》 2020年第14期36-39,42,共5页 China Elevator
基金 国家市场监督管理总局科技项目(2019MK019)。
关键词 自动扶梯 行为识别 双目深度 深度学习 人工智能 escalator behavior recognition RGB-D deep learning artificial intelligence
  • 相关文献

参考文献1

共引文献16

同被引文献51

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部