期刊文献+

基于边缘计算的机巡图像缺陷识别算法研究 被引量:3

Research on image defect recognition algorithm based on edge calculation
原文传递
导出
摘要 机巡图像识别算法(Faster R-CNN算法)存在识别精度低的不足,为此提出基于边缘计算的机巡图像缺陷识别算法。通过对机巡图像缺陷特征提取,再利用RPN网络获取目标候选区域,利用边缘计算优化Faster R-CNN算法,在此基础上,实行Faster R-CNN训练,再通过正负样本和损失函数对目标区域实施精确分类,从而识别出机巡图像缺陷,至此完成基于边缘计算的机巡图像缺陷识别算法研究。通过与传统算法、未经优化的Faster R-CNN算法作对比实验,实验结果表明,提出的基于边缘计算的机巡图像缺陷识别算法能更有效地识别机巡图像缺陷。 The aircraft patrol image recognition algorithm(Faster R-CNN algorithm)has the disadvantage of low recognition accuracy.For this reason,a machine-based image defect recognition algorithm based on edge calculation is proposed.By extracting the defect features of the camera image,and then using the RPN network to obtain the target candidate region,the edge calculation is used to optimize the Faster R-CNN algorithm.On this basis,the Faster R-CNN training is implemented,and then the positive and negative samples and the loss function are used to target the target.The area is accurately classified to identify the defect of the camera image,and the algorithm for defect recognition of the camera image based on edge calculation is completed.Compared with the traditional algorithm and the unoptimized Faster R-CNN algorithm,the experimental results show that the proposed edge recognition based image recognition algorithm can more effectively identify the defect of the camera image.
作者 董召杰 林志达 DONG Zhaojie;LIN Zhida(Southern Power Grid Digital Grid Research Institute Co.,Ltd.,Guangzhou 510000,China;China Southern Power Grid Co.,Ltd.,Guangzhou 510663,China)
出处 《自动化与仪器仪表》 2020年第7期77-80,共4页 Automation & Instrumentation
基金 中国南方电网有限责任公司科技项目(No.090000KK52170124)。
关键词 图像缺陷识别算法 Faster R-CNN 无人机巡检图像 image defect recognition algorithm faster R-CNN Drone inspection image
  • 相关文献

参考文献14

二级参考文献79

共引文献472

同被引文献35

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部