期刊文献+

内燃机用SLM成形Ti600高温钛合金组织和力学性能分析 被引量:3

Microstructures and Mechanical Properties of Ti600 Alloy Manufactured by Selective Laser Melting
下载PDF
导出
摘要 为提升SLM成形内燃机用Ti600钛合金延伸率并保持原有的屈服强度,本文对SLM制造能量密度工艺参数进行适当调节,实验测试分析其组织和力学性能变化。研究结果表明:无论何种SLM成形Ti600合金下都生成了白色α′相颗粒物。能量密度减小至52 J/mm^3,此时β马氏体发生了较大程度原位分解,有众多α′相析出,形成了针形的α+β组织。Ti600合金的X射线衍射谱图上形成了β相的明显衍射峰,SLM成形期间众多α′相转变为(α+β)组织。能量密度52 J/mm^3合金在保持原有力学强度的条件下使延伸率得到明显增大。能量密度52 J/mm^3合金在断口区域形成了无解理面的韧窝;能量密度60 J/mm^3合金在撕裂棱边缘形成了更多韧窝,具备更优的韧性。 The influence of the energy density on the microstructures,phase-structures and mechanical properties of Ti600 Ti-alloy,an advanced internal combustion engine material manufactured by selective laser melting(SLM)of Ti600 powder,was investigated with X-ray diffraction,scanning electron microscopy,and conventional mechanical probes.The preliminary results show that the energy density had a major impact.To be specific,selective laser melting always produced whiteα′-phased grains.As the energy density decreased to about 60 J/mm^3,formation of quite a fewβ-phase appeared and more dimple fractures existed at the tearing ridges of the Ti-alloy with better toughness;to 52 J/mm^3,only tensile strength significantly increased and in-situ decomposition ofβ-phase martensite induced much precipitation ofα′-phase,accompanied by formation of(α′+β)phased needles,~0.6μm in diameter;to^44 J/mm^3,β-phase content slightly decreased.
作者 杜少杰 李扬 Du Shaojie;li Yang(College of Automotive Engineering,Yellow River Jiaotong University,Jiaozuo 454950,China)
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2020年第6期555-559,共5页 Chinese Journal of Vacuum Science and Technology
关键词 选区激光熔化 Ti600 原位分解 拉伸性能 Selective laser melting Ti600 alloy Ductility Tensile properties
  • 相关文献

参考文献2

二级参考文献20

  • 1王华明,张凌云,李安,蔡良续,汤海波,吕旭东.先进材料与高性能零件快速凝固激光加工研究进展[J].世界科技研究与发展,2004,26(3):27-31. 被引量:40
  • 2杨义,徐锋,黄爱军,李阁平.全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J].金属学报,2005,41(7):713-720. 被引量:37
  • 3HuangBoyun(黄伯云),LiChenggong(李成功),ShiLikai(石力开)eta1.中国材料工程大典,有色金属工程(1)[M].BeOing:ChemicalIndustryPress,2005:636.
  • 4Tarin P, Fernandez A L, Simon J M et al. Materials Science and Engineering A [J]. 2006, 438-440(25): 364.
  • 5Yang H, Zhan M, Liu Y L et al. Materials Processing Technology[J]. 2004, 151(1-3): 63.
  • 6I Froes F H., Mashl S J, Hebeisen J C et al. JOMdournal of the Minerals, Metals and Materials Society[J]. 2004, 56(11): 46.
  • 7Arcella F G, Froes F H. JOM Journal of the Minerals, Metals and Materials Society[J]. 2000, 52(5): 28.
  • 8Abbott D H, Arcella F G. Advanced Materials and Processes[J]. 1998, 153(5): 29.
  • 9Abbott D H. Met Powder Rep[J]. 1998, 53(2): 24.
  • 10Lin X, Yue T M, Yang H Oet al. Materials Science and Engineering ,4 [J]. 2005, 391 (1-2): 325.

共引文献29

同被引文献71

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部