摘要
车牌识别是智能交通管理系统中的重要组成部分,能有效地提高车辆管理效率。文章在分析传统的LeNet-5卷积神经网络技术的基础上,提出通过增加卷积核个数,增大卷积核,采用softmax分类器,使用Dropout正则化方法和Adam优化算法对卷积神经网络进行改进,然后对车牌中汉字和字母(数字)的数据集分别进行训练。最后通过实验进行验证,改进的LeNet-5卷积神经网络对车牌具有很好的识别性能,使车牌识别正确率得到提升。
出处
《滁州学院学报》
2020年第2期61-64,共4页
Journal of Chuzhou University