期刊文献+

仿生耳石器的冲击与振动传感特性研究 被引量:2

Study on Shock and Vibration Sensing Characteristics of a Bionic Otoliths
下载PDF
导出
摘要 为了研究人体耳石器官的冲击与振动传感特性,本文根据人体耳石器官的生理结构,采用表面对称电极含金属芯PVDF压电纤维(SMPF)作为元件,设计制备了仿生耳石器。根据压电方程和振动理论,建立了仿生耳石器的冲击和振动传感理论模型。搭建实验平台,测试了仿生耳石器的振动传感功能。实验结果证明,在冲击与振动的作用下,仿生耳石器中的液体使耳石器内的囊斑发生形变,通过SMPF产生的电荷信号,可以感知受到冲击和振动的波形、频率和振幅。实验结果验证了理论模型,同时证明了人体耳石器具有感知直线加速度的幅值和角度的特性。 In order to study the shock and vibration sensing characteristics of human otolith organs,according to the physiological structure of human otolith organs,bionic otoliths were designed and prepared by using surface-symmetric electrodes with metal core PVDF piezoelectric fibers(SMPF)as components.According to the piezoelectric equation and vibration theory,the theoretical model of impact and vibration sensing of the bionic otolith is established.An experimental platform was built to test the vibration sensing function of the bionic otolith.The experimental results prove that under the action of shock and vibration,the liquid in the bionic otolith deforms the cysts in the otolith,and the charge signal generated by SMPF can sense the waveform,frequency and amplitude of the shock and vibration.The experimental results validate the theoretical model and prove that the human otolith has the characteristics of sensing the amplitude of linear acceleration and the angle change of the otolith.
作者 王永坡 李强 姜亚妮 何灿 边义祥 陈文家 WANG Yongpo;LI Qiang;JIANG Yani;HE Can;BIAN Yixiang;CHEN Wenjia(College of Mechanical Engineering,YangZhou University,Yangzhou Jiangsu 225127,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2020年第5期655-660,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(51775483)。
关键词 压电纤维 仿生耳石器 冲击与振动 细胞纤毛 传感器 加速度 piezoelectric fiber bionic otolith shock and vibration cell cilia sensor acceleration
  • 相关文献

参考文献6

二级参考文献56

  • 1贾宏博,郭世俊,谢溯江,毕红哲,刘广莉,王锦铃,于立身,吴子明.主观重力垂直线知觉检查及其常值标准[J].中华航空航天医学杂志,2005,16(1):29-33. 被引量:11
  • 2Richard D. Rabbitt,Kathryn D. Breneman,Curtis King,Angela M. Yamauchi,Richard Boyle,Stephen M. Highstein.Dynamic Displacement of Normal and Detached Semicircular Canal Cupula[J]. Journal of the Association for Research in Otolaryngology . 2009 (4)
  • 3Marytheresa A. Ifediba,Suhrud M. Rajguru,Timothy E. Hullar,Richard D. Rabbitt.The Role of 3-Canal Biomechanics in Angular Motion Transduction by the Human Vestibular Labyrinth[J]. Annals of Biomedical Engineering . 2007 (7)
  • 4A. Yamauchi,R. D. Rabbitt,R. Boyle,S. M. Highstein.Relationship between Inner-Ear Fluid Pressure and Semicircular Canal Afferent Nerve Discharge[J]. Journal of the Association for Research in Otolaryngology . 2002 (1)
  • 5DICKMAN J D,REDER P A,CORREIA M J.Amethod for controlled mechanical stimulation of singlesemicircular canals. J.Neurosci.Methods . 1988
  • 6RABBITT R D,BOYLE R,HIGHSTEIN S M.Me-chanical indentation of the vestibular labyrinth and itsrelationship to head rotation in the toadfish,Opsanustau. Journal of Neurophysiology . 1995
  • 7M.Kassemi,D.Deserranno,J.G.Oas.Fluid-structural interactions in the inner ear. Computers and Structures . 2005
  • 8Ewald,J. R. Physiologische Untersuchungen über das Endorgan des Nervus octavus . 1892
  • 9Dickman,JD,Correia,MJ.Responses of pigeon horizontal semicircular canal afferent fibers, I. Step, trapezoid, and low-frequency sinusoid mechanical and rotational stimulation. Journal of Neurophysiology . 1989
  • 10Hillman,DE,McLaren,JW.Displacement configuration of semicircular canal cupulae. Neuroscience . 1979

共引文献18

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部