期刊文献+

基于鱼侧线感知原理和深度学习的水下平动目标方向识别 被引量:3

Underwater Translational Target Direction Recognition Based on Lateral Line Perception Principle and Deep Learning
原文传递
导出
摘要 鱼侧线感知原理为潜航器水下目标感知技术研究提供了一种新的思路,但由于流场模型难以准确构建,基于模型的解析方法难以准确感知水下平动目标,提出基于鱼侧线感知原理和深度学习的水下平动目标方向识别方法。通过构建偶极子源周围压力场分布模型分析鱼侧线感知目标原理,在理论上分析压力变化与偶极子源尺寸、运动参数、位置的关系,理论分析表明,流场中压力的大小与偶极子源的位置密切相关,偶极子源振动频率处的压力变化特征明显,可用于训练和识别。采用时频分析方法处理压力传感器信号并提取时频分布特征,研究表明不同平动方向产生的压力变化具有不同的时频分布特征。提出利用卷积神经网络训练压力传感器信号,进而识别水下平动目标方向。在十字形传感器阵列及试验平台上开展试验验证,试验结果表明水下平动目标方向综合识别准确率在80%以上。在无需准确建立流场模型的情况下,通过深度学习可较准确识别水下平动目标,为潜航器水下目标感知提供了一种新的技术途径。 The fish lateral line perception principle provides a new idea for the submarine underwater target sensing technology.Because the flow field model is difficult to build accurately,the model-based analytical method is difficult to precisely detect the target.The underwater translational target direction recognition method is proposed based on lateral line perception principle and deep learning.By constructing a pressure field distribution model around the dipole source,the lateral line perception principle is analyzed,and the relationship between pressure changes and the dipole source size,motion parameters,and position is theoretically analyzed.The results show that the pressure in the flow field is related to the position of the dipole source,and the features of pressure change at the dipole source vibration frequency are obvious,which can be used for training and identification.The time-frequency analysis method is used to process the pressure sensor signals and extract the time-frequency distribution features.Studies show that pressure changes in different translational directions have different time-frequency distribution features.It is proposed to use the convolutional neural networks to train the pressure sensor signals to identify the direction of the underwater translation target.The cross-shaped sensor array and the test platform are used to carry out test.Results show that the accuracy of the comprehensive recognition is above 80%.Without the need to accurately establish a flow field model,underwater translation targets can be accurately identified through deep learning.A new technical approach is provided for submarine underwater target perception.
作者 张勇 郑贤德 季明江 林鑫 邱静 刘冠军 ZHANG Yong;ZHENG Xiande;JI Mingjiang;LIN Xin;QIU Jing;LIU Guanjun(College of Intelligence Science and Technology,National University of Defense Technology,Changsha 410073;Science and Technology on Integrated Logistics Support Laboratory,National University of Defense Technology,Changsha 410073)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2020年第12期231-239,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(51675528 51605482)。
关键词 仿生鱼侧线 深度学习 水下平动目标方向识别 bionic lateral line deep learning underwater translation direction recognition
  • 相关文献

参考文献3

二级参考文献19

  • 1ABDULSADDA A T, TAN X. An artificial lateral line system using IPMC sensor arrays[J]. IJSNM, 2012, 3(3). 226-242.
  • 2FAN Z, CHEN J, ZOU J, et al. Design and fabrication of artificial lateral line flow sensors[J]. JMM, 2002, 12(5): 655.
  • 3IZADI N, DE BOER M J, BERENSCHOT J W, et al. Fabrication of dense flow sensor arrays on flexible membranes[C]// Solid-State Sensors, Actuators and Microsystems Conference, Transducers 2009 International. IEEE, 2009: 1075-1078.
  • 4CHEN J, ENGEL J, CHEN N, et al. Artificial lateral line and hydrodynamic object tracking[C]// Micro Electro Mechanical Systems, MEMS 2006 Istanbul. 19th IEEE International Conference on. IEEE, 2006: 694-697.
  • 5VENTURELLI R, AKANYETI O, VISENTIN F, et al. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows[J]. Bioinspir Biomim, 2012, 7(3): 036004.
  • 6KOTTAPALLI A G P, ASADNIA M, MIAO J M, et al. A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing[J]. Smart Mater. Struct., 2012, 21(11): 481-484.
  • 7GUAN L, ZHANG G, XU J, et al. Design ofT-shape vector hydrophone based on MEMS[J]. Sensors & Actuators A Physical, 2012, 188(12): 35-40.
  • 8KOTTAPALLI A G, ASADNIA M, MIAO J, et al. Touch at a distance sensing: Lateral-line, inspired MEMS flow sensors[J]. Bioinspir Biomim , 2013 , 9(4) : 046011-046011.
  • 9DAGAMSEHAMK, LAMMERINKT S J, KOLSTERM L, et al. Dipole-source localization using biomimetic flow-sensor arrays positioned as lateral-line system[J]. Sensors & Actuators A Physical, 2010, 162(2): 355-360.
  • 10TAORMINA R, CHAU K W, SETHI R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon[J]. Engineering Applications of Artificial Intelligence, 2012, 25(8): 1670-1676.

共引文献16

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部