摘要
煤矿综采自动化技术的研究日渐成熟,但由于自动化综采工作面采煤工艺复杂,智能化系统庞大,各设备作业条件复杂。在分析各自动化子系统间存在大量信息孤岛、现存在综采自动化设备和系统不能有效联通,数据可用性低的问题,为了在海量有噪声的、模糊的、随机的实际数据中,提取挖掘其内在控制和生产决策方面有潜在价值的信息,探究如何通过深度数据挖掘实现对综采自动化系统的精准开采。基于数据挖掘技术对建立的开采模型的融合数据分析,根据实时工况数据及各传感器测量数据的实际控制反馈,进行智能开采模型算法的深度学习和控制算法的迭代;随着数据挖掘不断优化控制参数和控制策略算法分析,增加了系统和装备的分析决策功能,最终转换为精准开采决策,极大提升了综采工作面智能化整体水平。
The research of fully mechanized mining automation technology is becoming more and more mature.Because of the complexity of mining technology and equipment working conditions of automatic fully mechanized mining face,the intelligent system is huge.In view of the fact that there are a large number of information islands,the existing automation equipment and systems cannot be effectively connected,and the data availability is low,in order to extract the information with potential value hidden in the massive noisy,fuzzy and random actual data,the precise control of the fully mechanized mining automation system through deep data mining is researched.Based on the fusion data analysis of mining model established by data mining technology,according to the real-time working condition data and the actual control feedback of sensor measurement data,the deep learning of intelligent mining model algorithm and the iteration of control algorithm are carried out.With the development of data mining,the control parameters and control strategy algorithms are continuously optimized,the analysis and decision-making functions of the system and equipment are increased,and the precise mining decision-making is finally realized,which will greatly improve the overall intelligent level of fully mechanized mining face.
作者
易瑞强
YI Rui-qiang(Shaanxi Huangling No.2 Coal Mine Co.,Ltd.,Yan’an 727302,China)
出处
《陕西煤炭》
2020年第4期85-90,106,共7页
Shaanxi Coal
关键词
信息融合
大数据
数据挖掘
智能化
精准开采
information fusion
big data
data mining
intellectualization
precision mining